实例解析linux内核I2C体系结构(2)

四、在内核里写i2c设备驱动的两种方式

前文介绍了利用/dev/i2c-0在应用层完成对i2c设备的操作,但很多时候我们还是习惯为i2c设备在内核层编写驱动程序。目前内核支持两种编写i2c驱动程序的方式。下面分别介绍这两种方式的实现。这里分别称这两种方式为“Adapter方式(LEGACY)”和“Probe方式(new style)”。

(1) Adapter方式(LEGACY)

(下面的实例代码是在2.6.27内核的pca953x.c基础上修改的,原始代码采用的是本文将要讨论的第2种方式,即Probe方式)

●    构建i2c_driver

static struct i2c_driver pca953x_driver = {
                  .driver = {
                                      .name= "pca953x", //名称
                                },
                  .id= ID_PCA9555,//id号
                .attach_adapter= pca953x_attach_adapter, //调用适配器连接设备
                .detach_client= pca953x_detach_client,//让设备脱离适配器
        };

●    注册i2c_driver

static int __init pca953x_init(void)
                        {
                return i2c_add_driver(&pca953x_driver);
        }
        module_init(pca953x_init);

●    attach_adapter动作

执行i2c_add_driver(&pca953x_driver)后会,如果内核中已经注册了i2c适配器,则顺序调用这些适配器来连接我们的i2c设备。此过程是通过调用i2c_driver中的attach_adapter方法完成的。具体实现形式如下:

static int pca953x_attach_adapter(struct i2c_adapter *adapter)
                        {
                return i2c_probe(adapter, &addr_data, pca953x_detect);
                /*
                adapter:适配器
                addr_data:地址信息
                pca953x_detect:探测到设备后调用的函数
                */
        }

地址信息addr_data是由下面代码指定的。
        /* Addresses to scan */
                        static unsigned short normal_i2c[] = {0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,I2C_CLIENT_END};
                        I2C_CLIENT_INSMOD;

注意:normal_i2c里的地址必须是你i2c芯片的地址。否则将无法正确探测到设备。而I2C_ CLIENT_INSMOD是一个宏,它会利用normal_i2c构建addr_data。

●    构建i2c_client,并注册字符设备驱动

i2c_probe在探测到目标设备后,后调用pca953x_detect,并把当时的探测地址address作为参数传入。

static int pca953x_detect(struct i2c_adapter *adapter, int address, int kind)
                        {
                                struct i2c_client *new_client;
                                struct pca953x_chip *chip;  //设备结构体
                int err = 0,result;
                dev_t pca953x_dev=MKDEV(pca953x_major,0);//构建设备号,根据具体情况设定,这里我只考虑了normal_i2c中只有一个地址匹配的情况。
                if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA| I2C_FUNC_SMBUS_WORD_DATA))//判定适配器能力
                goto exit;
                                if (!(chip = kzalloc(sizeof(struct pca953x_chip), GFP_KERNEL))) {
                                        err = -ENOMEM;
                                        goto exit;
                                }
                                /****构建i2c-client****/
                                chip->client=kzalloc(sizeof(struct i2c_client),GFP_KERNEL);
                                new_client = chip->client;
                                i2c_set_clientdata(new_client, chip);
                                new_client->addr = address;
                                new_client->adapter = adapter;
                                new_client->driver = &pca953x_driver;
                                new_client->flags = 0;
                                strlcpy(new_client->name, "pca953x", I2C_NAME_SIZE);
                                if ((err = i2c_attach_client(new_client)))//注册i2c_client
                                goto exit_kfree;
                                if (err)
                                goto exit_detach;
                                if(pca953x_major)
                                {
                                        result=register_chrdev_region(pca953x_dev,1,"pca953x");
                                }
                                else{
                                        result=alloc_chrdev_region(&pca953x_dev,0,1,"pca953x");
                                        pca953x_major=MAJOR(pca953x_dev);
                                }
                                if (result < 0) {
                                        printk(KERN_NOTICE "Unable to get pca953x region, error %d\n", result);
                                        return result;
                                }
                                pca953x_setup_cdev(chip,0); //注册字符设备,此处不详解
                return 0;
                                exit_detach:
                                i2c_detach_client(new_client);
                       exit_kfree:
                                kfree(chip);
                        exit:
                                return err;
                        }

i2c_check_functionality用来判定设配器的能力,这一点非常重要。你也可以直接查看对应设配器的能力,如

static const struct i2c_algorithm smbus_algorithm = {
                                .smbus_xfer= i801_access,
                                .functionality= i801_func,
                        };
                        static u32 i801_func(struct i2c_adapter *adapter)
                        {
                                        return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |
                                    I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |
                                I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_WRITE_I2C_BLOCK
                                                | (isich4 ? I2C_FUNC_SMBUS_HWPEC_CALC : 0);
                      }

●    字符驱动的具体实现

struct file_operations pca953x_fops = {
                                .owner  = THIS_MODULE,
                                .ioctl= pca953x_ioctl,
                                .open= pca953x_open,
                                .release =pca953x_release,
                      };

字符设备驱动本身没有什么好说的,这里主要想说一下,如何在驱动中调用i2c设配器帮我们完成数据传输。

目前设配器主要支持两种传输方法:smbus_xfer和master_xfer。一般来说,如果设配器支持了master_xfer那么它也可以模拟支持smbus的传输。但如果只实现smbus_xfer,则不支持一些i2c的传输。

int (*master_xfer)(struct i2c_adapter *adap,struct i2c_msg *msgs,int num);
                        int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,
                                                                                                unsigned short flags, char read_write,
                                                                              u8 command, int size, union i2c_smbus_data * data);

master_xfer中的参数设置,和前面的用户空间编程一致。现在只是要在驱动中构建相关的参数然后调用i2c_transfer来完成传输既可。

int i2c_transfer(struct i2c_adapter * adap, struct i2c_msg *msgs, int num)

smbus_xfer中的参数设置及调用方法如下:

static int pca953x_write_reg(struct pca953x_chip *chip, int reg, uint16_t val)
                        {
                                int ret;
                                ret = i2c_smbus_write_word_data(chip->client, reg << 1, val);
                                if (ret < 0) {
                                                dev_err(&chip->client->dev, "failed writing register\n");
                                                        return -EIO;
                                                }
                                return 0;
                      }

上面函数完成向芯片的地址为reg的寄存器写一个16bit的数据。i2c_smbus_write_word_data的实现如下:

s32 i2c_smbus_write_word_data(struct i2c_client *client, u8 command, u16 value)
                        {
                                union i2c_smbus_data data;
                                data.word = value;
                                return i2c_smbus_xfer(client->adapter,client->addr,client->flags,
                                                                                        I2C_SMBUS_WRITE,command,
                                                                                        I2C_SMBUS_WORD_DATA,&data);
                      }

从中可以看出smbus传输一个16位数据的方法。其它操作如:字符写、字符读、字读、块操作等,可以参考内核的i2c-core.c中提供的方法。

●    注销i2c_driver

static void __exit pca953x_exit(void)
                        {
                                i2c_del_driver(&pca953x_driver);
                        }
                      module_exit(pca953x_exit);

●    detach_client动作

顺序调用内核中注册的适配器来断开我们注册过的i2c设备。此过程通过调用i2c_driver中的attach_adapter方法完成的。具体实现形式如下:

static int pca953x_detach_client(struct i2c_client *client)
                        {
                                int err;
                                struct pca953x_chip *data;
                                if ((err = i2c_detach_client(client)))//断开i2c_client
                                return err;
                                data=i2c_get_clientdata(client);
                                cdev_del(&(data->cdev));
                                unregister_chrdev_region(MKDEV(pca953x_major, 0), 1);
                                kfree(data->client);
                                kfree(data);
                                return 0;
                      }

(2) Probe方式(new style)

●    构建i2c_driver

和LEGACY方式一样,也需要构建i2c_driver,但是内容有所不同。

static struct i2c_driver pca953x_driver = {
                                .driver = {
                                        .name= "pca953x",
                                        },
                                        .probe= pca953x_probe, //当有i2c_client和i2c_driver匹配时调用
                        .remove= pca953x_remove,//注销时调用
                        .id_table= pca953x_id,//匹配规则
        };

●    注册i2c_driver

static int __init pca953x_init(void)
                        {
                                return i2c_add_driver(&pca953x_driver);
                        }
                      module_init(pca953x_init);

在注册i2c_driver的过程中,是将driver注册到了i2c_bus_type的总线上。此总线的匹配规则是:

static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
                                                                                                                const struct i2c_client *client)
                        {
                                while (id->name[0]) {
                                        if (strcmp(client->name, id->name) == 0)
                                                return id;
                                        id++;
                                }
                                return NULL;
                      }

可以看出是利用i2c_client的名称和id_table中的名称做匹配的。本驱动中的id_table为

static const struct i2c_device_id pca953x_id[] = {
                                { "pca9534", 8, },
                                { "pca9535", 16, },
                                { "pca9536", 4, },
                                { "pca9537", 4, },
                                { "pca9538", 8, },
                                { "pca9539", 16, },
                                { "pca9554", 8, },
                                { "pca9555", 16, },
                                { "pca9557", 8, },
                                { "max7310", 8, },
                                { }
                      };

看到现在我们应该会有这样的疑问,在Adapter模式中,i2c_client是我们自己构造出来的,而现在的i2c_client是从哪来的呢?看看下面的解释

●    注册i2c_board_info

对于Probe模式,通常在平台代码中要完成i2c_board_info的注册。方法如下:

static struct i2c_board_info __initdata test_i2c_devices[] = {
                                {
                                        I2C_BOARD_INFO("pca9555", 0x27),//pca9555为芯片名称,0x27为芯片地址
                        .platform_data = &pca9555_data,
                                }, {
                                        I2C_BOARD_INFO("mt9v022", 0x48),
                                        .platform_data = &iclink[0], /* With extender */
                                }, {
                                        I2C_BOARD_INFO("mt9m001", 0x5d),
                                        .platform_data = &iclink[0], /* With extender */
                                },
                        };
                      i2c_register_board_info(0, test_i2c_devices,ARRAY_SIZE(test_i2c_devices));  //注册

i2c_client就是在注册过程中构建的。但有一点需要注意的是i2c_register_board_info并没有EXPORT_SYMBOL给模块使用。

●    字符驱动注册

在Probe方式下,添加字符驱动的位置在pca953x_probe中。

static int __devinit pca953x_probe(struct i2c_client *client,const struct i2c_device_id *id)
                        {
                                        ……
                        /****字符设备驱动注册位置****/
                                        ……
                        return 0;
                      }

●    注销i2c_driver

static void __exit pca953x_exit(void)
                        {
                                i2c_del_driver(&pca953x_driver);
                        }
                      module_exit(pca953x_exit);

●    注销字符设备驱动

在Probe方式下,注销字符驱动的位置在pca953x_remove中。

static int __devinit pca953x_remove (struct i2c_client *client)
                        {
                                ……
                /****字符设备驱动注销的位置****/
                                ……
                return 0;
                      }

●    I2C设备的数据交互方法(即:调用适配器操作设备的方法)和Adapter方式下相同。

你可能感兴趣的:(实例解析linux内核I2C体系结构(2))