Hadoop 稀疏矩阵乘法的MapReduce计算

我们在用矩阵处理真实数据的时候,一般都是非常稀疏矩阵,为了节省存储空间,通常只会存储非0的数据。

下面我们来做一个稀疏矩阵:

Hadoop 稀疏矩阵乘法的MapReduce计算_第1张图片

新建2个稀疏矩阵数据文件sm1.csv, sm2.csv

只存储非0的数据,3列存储,第一列“原矩阵行”,第二列“原矩阵列”,第三列“原矩阵值”。

sm1.csv


1,1,1
1,4,3
2,1,2
2,2,5
2,4,4
3,4,1
4,1,4
4,2,7
4,3,1
4,4,2

sm2.csv


1,1,5
2,2,2
4,1,3
4,2,1

代码:

package org.edu.bupt.xiaoye.sparsemartrix;

import java.io.IOException;
import java.net.URI;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class SparseMartrixMultiply {

	public static class MyMapper extends Mapper<LongWritable, Text, Text, Text> {
		private String flag; // m1 or m2
		private int rowNumA = 4; // 矩阵A的行数,因为要在对B的矩阵处理中要用
		private int colNumA = 4;// 矩阵A的列数
		private int rolNumB = 4;
		private int colNumB = 2;// 矩阵B的列数
		private static final Text k = new Text();
		private static final Text v = new Text();

		@Override
		protected void setup(Context context) throws IOException,
				InterruptedException {
			FileSplit split = (FileSplit) context.getInputSplit();
			flag = split.getPath().getName();// 判断读的数据集
		}

		@Override
		protected void map(LongWritable key, Text value, Context context)
				throws IOException, InterruptedException {
			String[] records = value.toString().split(",");
			int x = Integer.parseInt(records[0]);
			int y = Integer.parseInt(records[1]);
			int num = Integer.parseInt(records[2]);
			if (flag.equals("m1")) {
				String[] vs = value.toString().split(",");
				for (int j = 0; j < colNumB; j++) {
					k.set(x + "," + (j + 1));
					v.set("A" + ":" + y + "," + num);
					context.write(k, v);
				}

			} else if (flag.equals("m2")) {
				for (int j = 0; j < rowNumA; j++) {
					k.set((j + 1) + "," + y);
					v.set("B:" + x + "," + num);
					context.write(k, v);
				}
			}
		}
	}

	public static class MyReducer extends
			Reducer<Text, Text, Text, IntWritable> {
		private static IntWritable v = new IntWritable();

		@Override
		protected void reduce(Text key, Iterable<Text> values, Context context)
				throws IOException, InterruptedException {
			/*
			 * 这里和一般矩阵不同
			 * 一般矩阵中,当进行第二次reduce方法调用的时候,会对数组a和b的所有元素都重新赋值
			 * 而在稀疏矩阵中,不会对数组的所有元素重新赋值,从而会发生上次调用reduce方法残留的数组元素值对这一次reduce产生影响。
			 */
			int[] a = new int[4];
			int[] b = new int[4];
			for (Text value : values) {
				String[] vs = value.toString().split(":");
				if (vs[0].equals("A")) {
					String[] ints = vs[1].toString().split(",");
					a[Integer.parseInt(ints[0]) - 1] = Integer
							.parseInt(ints[1]);
				} else {
					String[] ints = vs[1].toString().split(",");
					b[Integer.parseInt(ints[0]) - 1] = Integer
							.parseInt(ints[1]);
				}
			}
			// 用矩阵A的行乘矩阵B的列
			int sum = 0;
			for (int i = 0; i < 4; i++) {
				sum += a[i] * b[i];
			}
			v.set(sum);
			context.write(key, v);
		}
	}

	public static void run(Map<String, String> path) throws Exception {
		String input = path.get("input");
		String output = path.get("output");

		Configuration conf = new Configuration();
		final FileSystem fileSystem = FileSystem.get(new URI(input), conf);
		final Path outPath = new Path(output);
		if (fileSystem.exists(outPath)) {
			fileSystem.delete(outPath, true);
		}
		conf.set("hadoop.job.user", "hadoop");
		// conf.set("mapred.job.tracker", "10.103.240.160:9001");

		final Job job = new Job(conf);
		FileInputFormat.setInputPaths(job, input);
		job.setMapperClass(MyMapper.class);
		job.setReducerClass(MyReducer.class);
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(Text.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		job.setNumReduceTasks(1);// 设置个数为1
		FileOutputFormat.setOutputPath(job, outPath);
		job.waitForCompletion(true);
	}

}
驱动类:

package org.edu.bupt.xiaoye.sparsemartrix;

import java.util.HashMap;
import java.util.Map;
import java.util.regex.Pattern;

public class MainRun {

    public static final String HDFS = "hdfs://10.103.240.160:9000";
    public static final Pattern DELIMITER = Pattern.compile("[\t,]");

    public static void main(String[] args) {
        martrixMultiply();
    }
    
    public static void martrixMultiply() {
        Map<String, String> path = new HashMap<String, String>();
        path.put("input", HDFS + "/usr/hadoop/SparseMatrix");// HDFS的目录
        path.put("output", HDFS + "/usr/hadoop/SparseMatrix/output");

        try {
        	SparseMartrixMultiply.run(path);
        } catch (Exception e) {
            e.printStackTrace();
        }
        System.exit(0);
    }


}
这里注意需要注意的地方:

在reducer中定义数组a和b的时候,不要定义成MyMapper类成员。我就是因为这里定义成了成员变量导致出了错误调了好久。
/*
* 这里和一般矩阵不同
* 一般矩阵中,当进行第二次reduce方法调用的时候,会对数组a和b的所有元素都重新赋值
* 而在稀疏矩阵中,不会对数组的所有元素重新赋值,从而会发生上次调用reduce方法残留的数组元素值对这一次reduce产生影响。
*/


你可能感兴趣的:(mapreduce,算法,hadoop,数据,Matrix)