Given a sorted array keys[0.. n-1] of search keys and an array freq[0.. n-1] of frequency counts, where freq[i] is the number of searches to keys[i]. Construct a binary search tree of all keys such that the total cost of all the searches is as small as possible.

Let us first define the cost of a BST. The cost of a BST node is level of that node multiplied by its frequency. Level of root is 1.

Example 1
Input:  keys[] = {10, 12}, freq[] = {34, 50}
There can be following two possible BSTs 
        10                       12
          \                     / 
           12                 10
          I                     II
Frequency of searches of 10 and 12 are 34 and 50 respectively.
The cost of tree I is 34*1 + 50*2 = 134
The cost of tree II is 50*1 + 34*2 = 118 

Example 2
Input:  keys[] = {10, 12, 20}, freq[] = {34, 8, 50}
There can be following possible BSTs
    10                12                 20         10              20
      \             /    \              /             \            /
      12          10     20           12               20         10  
        \                            /                 /           \
         20                        10                12             12  
     I               II             III             IV             V
Among all possible BSTs, cost of the fifth BST is minimum.  
Cost of the fifth BST is 1*50 + 2*34 + 3*8 = 142

1) Optimal Substructure:
The optimal cost for freq[i..j] can be recursively calculated using following formula.

We need to calculate optCost(0, n-1) to find the result.

The idea of above formula is simple, we one by one try all nodes as root (r varies from i to j in second term). When we make rth node as root, we recursively calculate optimal cost from i to r-1 and r+1 to j.
We add sum of frequencies from i to j (see first term in the above formula), this is added because every search will go through root and one comparison will be done for every search.

http://www.geeksforgeeks.org/dynamic-programming-set-24-optimal-binary-search-tree/