【ACdream】1403 Graph Game Andrew Stankevich Contest 21 二分匹配——关键点

传送门:【ACdream】1403 Graph Game Andrew Stankevich Contest 21


题目分析:只有该点是二分匹配的关键点,少了这个点匹配数会减小,这个点是N,否则这个点是P。因为二分匹配的路径都是偶数的,如果删除这个点找不到增广路则说明这个点是关键点,从这个点出发的路径只能是偶数,则先手必胜。如果删除这个点能找到增广路则说明这个点不是关键点,从这个点出发的路径可以是奇数,则后手必胜。


我的代码找增广路的时候加了记忆化,跑了48ms。如果用非递归我感觉效果更加好一点?


代码如下:


#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std ;
 
typedef long long LL ;
#define rep( i , a , b ) for ( int i = a ; i < b ; ++ i )
#define For( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define rev( i , a , b ) for ( int i = a ; i >= b ; -- i )
#define travel( e , H , u ) for ( Edge* e = H[u] ; e ; e = e -> next )
#define clr( a , x ) memset ( a , x , sizeof a )
#define cpy( a , x ) memcpy ( a , x , sizeof a )

const int MAXN = 505 ;
const int MAXE = 100005 ;
const int INF = 0x3f3f3f3f ;

struct Edge {
	int v ;
	Edge* next ;
} E[MAXE] , *L[MAXN] , *R[MAXN] , *edge ;

int Q[MAXE] , head , tail ;
int Lx[MAXN] , Ly[MAXN] ;
int dx[MAXN] , dy[MAXN] ;
int vis[MAXN] , Time ;
int ans[MAXN] ;
int n1 , n2 , m ;
int dis ;

void clear () {
	edge = E ;
	clr ( L , 0 ) ;
	clr ( R , 0 ) ;
}

void addedge ( int u , int v , Edge* H[] ) {
	edge->v = v ;
	edge->next = H[u] ;
	H[u] = edge ++ ;
}

int Hopcroft_Krap () {
	dis = INF ;
	clr ( dx , -1 ) ;
	clr ( dy , -1 ) ;
	head = tail = 0 ;
	For ( i , 1 , n1 ) if ( Lx[i] == -1 ) {
		dx[i] = 0 ;
		Q[tail ++] = i ;
	}
	while ( head != tail ) {
		int u = Q[head ++] ;
		if ( dx[u] >= dis ) continue ;
		travel ( e , L , u ) {
			int v = e->v ;
			if ( dy[v] == -1 ) {
				dy[v] = dx[u] + 1 ;
				if ( ~Ly[v] ) {
					dx[Ly[v]] = dy[v] + 1 ;
					Q[tail ++] = Ly[v] ;
				} else dis = dy[v] ;
			}
		}
	}
	return dis != INF ;
}

int hungary ( int u ) {
	travel ( e , L , u ) {
		int v = e->v ;
		if ( vis[v] != Time && dy[v] == dx[u] + 1 ) {
			vis[v] = Time ;
			if ( ~Ly[v] && dy[v] == dis ) continue ;
			if ( Ly[v] == -1 || hungary ( Ly[v] ) ) {
				Ly[v] = u ;
				Lx[u] = v ;
				return 1 ;
			}
		}
	}
	return 0 ;
}

int match ( int ans = 0 ) {
	clr ( Lx , -1 ) ;
	clr ( Ly , -1 ) ;
	while ( Hopcroft_Krap () ) {
		++ Time ;
		For ( i , 1 , n1 ) if ( Lx[i] == -1 ) ans += hungary ( i ) ;
	}
	return ans ;
}

int L_augment ( int u ) {
	vis[u] = Time ;
	travel ( e , L , u ) {
		int v = e->v ;
		if ( Ly[v] == -1 || ans[Ly[v]] == Time ) {
			ans[u] = Time ;
			return 1 ;
		}
		if ( vis[Ly[v]] == Time ) continue ;
		if ( L_augment ( Ly[v] ) ) {
			ans[u] = Time ;
			return 1 ;
		}
	}
	return 0 ;
}

int R_augment ( int u ) {
	vis[u] = Time ;
	travel ( e , R , u ) {
		int v = e->v ;
		if ( Lx[v] == -1 || ans[Lx[v]] == Time ) {
			ans[u] = Time ;
			return 1 ;
		}
		if ( vis[Lx[v]] == Time ) continue ;
		if ( R_augment ( Lx[v] ) ) {
			ans[u] = Time ;
			return 1 ;
		}
	}
	return 0 ;
}

void solve () {
	int u , v ;
	clear () ;
	rep ( i , 0 , m ) {
		scanf ( "%d%d" , &u , &v ) ;
		addedge ( u , v , L ) ;
	}
	match () ;
	For ( u , 1 , n1 ) travel ( e , L , u ) addedge ( e->v , u , R ) ;
	++ Time ;
	For ( i , 1 , n1 ) {
		if ( Lx[i] == -1 || R_augment ( Lx[i] ) ) printf ( "P" ) ;
		else printf ( "N" ) ;
	}
	printf ( "\n" ) ;
	++ Time ;
	For ( i , 1 , n2 ) {
		if ( Ly[i] == -1 || L_augment ( Ly[i] ) ) printf ( "P" ) ;
		else printf ( "N" ) ;
	}
	printf ( "\n" ) ;
}

int main () {
	clr ( vis , 0 ) ;
	Time = 0 ;
	while ( ~scanf ( "%d%d%d" , &n1 , &n2 , &m ) ) solve () ;
	return 0 ;
}


你可能感兴趣的:(ACdream)