题目链接:
http://poj.org/problem?id=2762
Going from u to v or from v to u?
Description
In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has n rooms, and one-way corridors connecting some rooms. Each time, Wind choose two rooms x and y, and ask one of their little sons go from one to the other. The son can either go from x to y, or from y to x. Wind promised that her tasks are all possible, but she actually doesn't know how to decide if a task is possible. To make her life easier, Jiajia decided to choose a cave in which every pair of rooms is a possible task. Given a cave, can you tell Jiajia whether Wind can randomly choose two rooms without worrying about anything?
Input
The first line contains a single integer T, the number of test cases. And followed T cases.
The first line for each case contains two integers n, m(0 < n < 1001,m < 6000), the number of rooms and corridors in the cave. The next m lines each contains two integers u and v, indicating that there is a corridor connecting room u and room v directly. Output
The output should contain T lines. Write 'Yes' if the cave has the property stated above, or 'No' otherwise.
Sample Input 1 3 3 1 2 2 3 3 1 Sample Output Yes Source
POJ Monthly--2006.02.26,zgl & twb
|
[Submit] [Go Back] [Status] [Discuss]
题目意思:给一幅图,判断任意两点v,u是否可到达.(u->v或v->u)都可以。
解题思路:
tarjan+dfs
先求有向图强连通分量,然后缩点建图,统计入度为0的联通分量个数,超过1肯定不行。然后对搜索子树dfs,如果某一节点有超过一个儿子,则这两个儿子之间不能到达,不行。
代码:
//#include<CSpreadSheet.h> #include<iostream> #include<cmath> #include<cstdio> #include<sstream> #include<cstdlib> #include<string> #include<string.h> #include<cstring> #include<algorithm> #include<vector> #include<map> #include<set> #include<stack> #include<list> #include<queue> #include<ctime> #include<bitset> #include<cmath> #define eps 1e-6 #define INF 0x3f3f3f3f #define PI acos(-1.0) #define ll __int64 #define LL long long #define lson l,m,(rt<<1) #define rson m+1,r,(rt<<1)|1 #define M 1000000007 //#pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; #define Maxn 1100 int low[Maxn],dfn[Maxn],sc,bc,sta[Maxn]; int n,m,dep,dei[Maxn],in[Maxn]; bool iss[Maxn]; vector<vector<int> >myv; vector<vector<int> >tree; bool hae[Maxn][Maxn]; int ans; void tarjan(int cur) { int ne; low[cur]=dfn[cur]=++dep; sta[++sc]=cur; iss[cur]=true; for(int i=0;i<myv[cur].size();i++) { ne=myv[cur][i]; if(!dfn[ne]) { tarjan(ne); if(low[ne]<low[cur]) low[cur]=low[ne]; } else if(iss[ne]&&dfn[ne]<low[cur]) low[cur]=dfn[ne]; } if(low[cur]==dfn[cur]) { ++bc; do { ne=sta[sc--]; iss[ne]=false; in[ne]=bc; }while(ne!=cur); } } void solve() { dep=sc=bc=0; memset(iss,false,sizeof(iss)); memset(dfn,0,sizeof(dfn)); for(int i=1;i<=n;i++) if(!dfn[i]) tarjan(i); } void dfs(int cur) { if(ans>2) return ; int res=0; for(int i=0;i<tree[cur].size();i++) { int ne=tree[cur][i]; res++; dfs(ne); } if(res>=2) ans=INF; } int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); int t; scanf("%d",&t); while(t--) { scanf("%d%d",&n,&m); myv.clear(); myv.resize(n+1); memset(dei,0,sizeof(dei)); for(int i=1;i<=m;i++) { int a,b; scanf("%d%d",&a,&b); myv[a].push_back(b); } solve(); tree.clear(); tree.resize(bc+1); memset(hae,false,sizeof(hae)); for(int i=1;i<=n;i++) { for(int j=0;j<myv[i].size();j++) { int ne=myv[i][j]; if(in[i]!=in[ne]) { dei[in[ne]]++; if(!hae[in[i]][in[ne]]) { hae[in[i]][in[ne]]=true; tree[in[i]].push_back(in[ne]); } } } } ans=0; for(int i=1;i<=bc;i++) if(!dei[i]) { ans++; dfs(i); if(ans>1) break; } if(ans==1) printf("Yes\n"); else printf("No\n"); } return 0; }