hdu4463 Outlets 最小生成树

     不超过50个点,先给两个点s1,s2表示这两个点必须先连起来,接下来给出n个点的坐标,在先连接s1,s2的前提下求最小生成树。 N不到50..普利姆,克鲁斯卡尔随便都能搞吧..虽说完全图理论上普利姆快一点-  -...

 

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <cstring>
#include <cmath>
using namespace std;

inline double dist(double x1,double y1,double x2,double y2)
{
    return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
struct node
{
    double x,y;
}pt[100];
double g[100][100];
double dis[100];
bool ft[100];
int n,m,tt,s1,s2;
int main()
{
//    freopen("in.txt","r",stdin);
    while(scanf("%d",&n) && n)
    {
        memset(ft,0,sizeof ft);
        scanf("%d%d",&s1,&s2);
        for (int i=1; i<=n; i++)
        {
            scanf("%lf%lf",&pt[i].x,&pt[i].y);
        }
        for (int i=1; i<=n; i++)
        for (int j=1; j<=n; j++)
        g[i][j]=g[j][i]=dist(pt[i].x,pt[i].y,pt[j].x,pt[j].y);

        for (int i=0; i<=n; i++) dis[i]=9999999999.999;
        dis[s1]=dis[s2]=0;
        ft[s1]=ft[s2]=true;

        for (int i=1; i<=n; i++)
        {
            if (i!=s1 && i!=s2)
            {
                dis[i]=min(g[i][s1],g[i][s2]);
            }
        }
        double minn=9999999999.999;
        int k;
        double ans=g[s1][s2];
        for (int i=3; i<=n; i++)
        {
            minn=9999999999.999;
            for (int j=1; j<=n; j++)
            if (!ft[j] && minn>dis[j])
            {
                minn=dis[j];
                k=j;
            }
            ans+=minn;
            ft[k]=true;
            for (int j=1; j<=n; j++)
            {
                if (!ft[j])
                dis[j]=min(dis[j],g[k][j]);
            }
        }
        printf("%.2lf\n",ans);
    }
    return 0;
}

你可能感兴趣的:(hdu4463 Outlets 最小生成树)