题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2255
解题思路:
二分图最优匹配的裸题,需要学习一下KM算法。。这道题也可以用网络流做,等学了网络流之后再写一下网络流的解题思路。
本题提供2个版本,一个是最朴素的KM算法,一个是优化后的KM算法(另外使用了输入外挂,成功刷入杭电前三)
代码如下:
#include<iostream> #include<cstdio> #include<cstring> #include<climits> #include<algorithm> using namespace std; #define N 310 int map[N][N]; bool visitx[N], visity[N]; int lx[N], ly[N]; int match[N]; int n; bool Hungary(int u) //匈牙利算法 { visitx[u] = true; for(int i = 0; i < n; ++i) { if(!visity[i] && lx[u] + ly[i] == map[u][i]) { visity[i] = true; if(match[i] == -1 || Hungary(match[i])) { match[i] = u; return true; } } } return false; } void KM_perfect_match() { int temp; memset(lx, 0, sizeof(lx)); //初始化顶标 memset(ly, 0, sizeof(ly)); //ly[i]为0 for(int i = 0; i < n; ++i) //lx[i]为权值最大的边 for(int j = 0; j < n; ++j) lx[i] = max(lx[i], map[i][j]); for(int i = 0; i < n; ++i) //对n个点匹配 { while(1) { memset(visitx, false, sizeof(visitx)); memset(visity, false, sizeof(visity)); if(Hungary(i)) //匹配成功 break; else //匹配失败,找最小值 { temp = INT_MAX; for(int j = 0; j < n; ++j) //x在交错树中 if(visitx[j]) for(int k = 0; k < n; ++k) //y在交错树外 if(!visity[k] && temp > lx[j] + ly[k] - map[j][k]) temp = lx[j] + ly[k] - map[j][k]; for(int j = 0; j < n; ++j) //更新顶标 { if(visitx[j]) lx[j] -= temp; if(visity[j]) ly[j] += temp; } } } } } int main() { int ans; while(scanf("%d", &n) != EOF) { ans = 0; memset(match, -1, sizeof(match)); for(int i = 0; i < n; ++i) for(int j = 0; j < n; ++j) scanf("%d", &map[i][j]); KM_perfect_match(); for(int i = 0; i < n; ++i) //权值相加 ans += map[match[i]][i]; printf("%d\n", ans); } return 0; }
优化版本:
#include<iostream> #include<cstdio> #include<cstring> #include<climits> #include<algorithm> using namespace std; #define N 310 int map[N][N]; bool visitx[N], visity[N]; int lx[N], ly[N]; int slack[N]; int match[N]; int n; int Scan() { int res = 0 , ch ; while( !( ( ch = getchar() ) >= '0' && ch <= '9' ) ) { if( ch == EOF ) return 1 << 30 ; } res = ch - '0' ; while( ( ch = getchar() ) >= '0' && ch <= '9' ) res = res * 10 + ( ch - '0' ) ; return res ; } bool Hungary(int u) //匈牙利算法 { visitx[u] = true; for(int i = 0; i < n; ++i) { if(visity[i]) continue; if(lx[u] + ly[i] == map[u][i]) { visity[i] = true; if(match[i] == -1 || Hungary(match[i])) { match[i] = u; return true; } } else //不在相等子图 slack[i] = min(slack[i], lx[u] + ly[i] - map[u][i]); } return false; } void KM_perfect_match() { int temp; memset(lx, 0, sizeof(lx)); //初始化顶标 memset(ly, 0, sizeof(ly)); //ly[i]为0 for(int i = 0; i < n; ++i) //lx[i]为权值最大的边 for(int j = 0; j < n; ++j) lx[i] = max(lx[i], map[i][j]); for(int i = 0; i < n; ++i) //对n个点匹配 { for(int j = 0; j < n; ++j) slack[j] = INT_MAX; while(1) { memset(visitx, false, sizeof(visitx)); memset(visity, false, sizeof(visity)); if(Hungary(i)) //匹配成功 break; else //匹配失败,找最小值 { temp = INT_MAX; for(int j = 0; j < n; ++j) if(!visity[j]) if(temp > slack[j]) temp = slack[j]; for(int j = 0; j < n; ++j) //更新顶标 { if(visitx[j]) lx[j] -= temp; if(visity[j]) ly[j] += temp; else slack[j] -= temp; } } } } } int main() { int ans; while(scanf("%d", &n) != EOF) { ans = 0; memset(match, -1, sizeof(match)); for(int i = 0; i < n; ++i) for(int j = 0; j < n; ++j) map[i][j] = Scan(); KM_perfect_match(); for(int i = 0; i < n; ++i) //权值相加 ans += map[match[i]][i]; printf("%d\n", ans); } return 0; }