UVA 12167 Proving Equivalences

大意:给定一些已有的结论,然后问你最小还需多少添加结论才能证明一个命题。

思路:有向图强连通缩点,然后判断出度与入度的最大值,当scnt == 1时,需特判。 - -!好久木有写强连通分量,生疏了。

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <string>
#include <algorithm>
using namespace std;

const int MAXN = 20010;
const int MAXM = 100010;

struct Edge
{
	int v, next;
}edge[MAXM];

int first[MAXN], stack[MAXN], ins[MAXN], dfn[MAXN], low[MAXN];
int belong[MAXN];
int ind[MAXN], outd[MAXN];

int n, m;
int cnt;
int scnt, top, tot;

void init()
{
	cnt = 0;
	scnt = top = tot = 0;
	memset(first, -1, sizeof(first));
	memset(dfn, 0, sizeof(dfn));
	memset(ins, 0, sizeof(ins));
	memset(ind, 0, sizeof(ind));
	memset(outd, 0, sizeof(outd));
}

void read_graph(int u, int v)
{
	edge[cnt].v = v, edge[cnt].next = first[u];
	first[u] = cnt++;
}

/*强连通分量*/

void dfs(int u)
{
	int v;
	low[u] = dfn[u] = ++tot;
	stack[top++] = u;
	ins[u] = 1;
	for(int e = first[u]; e != -1; e = edge[e].next)
	{
		v = edge[e].v;
		if(!dfn[v])
		{
			dfs(v);
			low[u] = min(low[u], low[v]);
		}
		else if(ins[v])
		{
			low[u] = min(low[u], dfn[v]);
		}
	}
	if(low[u] == dfn[u])
	{
		scnt++;
		do
		{
			v = stack[--top];
			belong[v] = scnt;
			ins[v] = 0;
		}while(u != v);
	}
}

void Tarjan()
{
	for(int v = 1; v <= n; v++) if(!dfn[v])
		dfs(v);
}

void read_case()
{
	init();
	scanf("%d%d", &n, &m);
	while(m--)
	{
		int u, v;
		scanf("%d%d", &u, &v);
		read_graph(u, v);
	}
}

void solve()
{
	read_case();
	Tarjan();
	for(int u = 1; u <= n; u++)
	{
		for(int e = first[u]; e != -1; e = edge[e].next)
		{
			int v = edge[e].v;
			if(belong[u] != belong[v])
			{
				outd[belong[u]]++;
				ind[belong[v]]++;
			}
		}
	}
	int a = 0, b = 0;
	for(int i = 1; i <= scnt; i++) 
	{
		if(!ind[i]) a++;
		if(!outd[i]) b++;
	}
	int ans = max(a, b);
	if(scnt == 1) ans = 0; //特判一下 
	printf("%d\n", ans);
}

int main()
{
	int T;
	scanf("%d", &T);
	while(T--)
	{
		solve();
	}
	return 0;
}


你可能感兴趣的:(UVA 12167 Proving Equivalences)