凸包相关算法汇总

求凸包的Graham算法:先极角排序,然后O(n)复杂度解决,具体做法见代码。


POJ:1113 Wall

题解:求凸包,且要求城墙也城堡之间有L的距离,只需要加上L为直径的圆周长即可。

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <cstring>
using namespace std;
const int MAXN = 1003;
const double pi = acos(-1.0);

struct POINT {
    int x, y;
} p[MAXN], hull[MAXN];
int n, l, m;

inline int cross(POINT &p1, POINT &p2, POINT &p0) {
    return (p1.x-p0.x)*(p2.y-p0.y) - (p2.x-p0.x)*(p1.y-p0.y);
}
bool cmp(POINT a, POINT b) {
    int t = cross(a, b, p[0]);
    if (t > 0) return true;
    if (t < 0) return false;
    if (abs(a.x-p[0].x)+abs(a.y-p[0].y) < abs(b.x-p[0].x)+abs(b.y-p[0].y))
        return true;
    else return false;
}
void Graham() {
    m = 0;
    hull[m++] = p[0];
    hull[m++] = p[1];
    for (int i=2; i<n; i++) {
        while (cross(hull[m-2], p[i], hull[m-1]) >= 0 && m>=2) m--;
        hull[m++] = p[i];
    }

}
inline double dist(POINT a, POINT b) {
    return sqrt((double)((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y)));
}
int main() {
    while (scanf("%d%d", &n, &l) == 2) {
        int x, y, k = 0;
        for (int i=0; i<n; i++) {
            scanf("%d %d", &p[i].x, &p[i].y);
            if ((p[k].x>p[i].x) || (p[k].x==p[i].x && p[k].y>p[i].y))
                k = i;
        }

        POINT tmp = p[0];
        p[0] = p[k];
        p[k] = tmp;
        sort(p+1, p+n, cmp);
        Graham();

        double ans = dist(hull[m-1], hull[0]);
        for (int i=0; i<m-1; i++)
            ans += dist(hull[i], hull[i+1]);
        ans += 2*pi*l;
        printf("%.0lf\n", ans);
    }
    return 0;
}


POJ:2187 Beauty Contest

求N个点的最远点对。

最短点对有分治算法,复杂度为O(nlogn)。

最远点对暴力的话为O(n^2)。

这道题目先求凸包,然后利用旋转卡壳算法,可在O(nlogn)复杂度内完成。

#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
#define N 50005
struct POINT {
    int x, y;
} p[N], hull[N];
int n, m;
inline int cross(const POINT &p1, const POINT &p2, const POINT &p0) {
    return (p1.x-p0.x)*(p2.y-p0.y) - (p2.x-p0.x)*(p1.y-p0.y);
}
inline int dist(const POINT &a, const POINT &b) {
    return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y);
}
bool cmp(POINT a, POINT b) {
    int t = cross(a, b, p[0]);
    if (t > 0) return true;
    if (t < 0) return false;
    if (abs(a.x-p[0].x)+abs(a.y-p[0].y) < abs(b.x-p[0].x)+abs(b.y-p[0].y))
        return true;
    else return false;
}
void Graham() {   //求凸包的Graham算法
    int k = 0;
    for (int i=1; i<n; i++)
        if (p[i].y<p[k].y || (p[i].y==p[k].y && p[i].x<p[k].x))
            k = i;
    POINT tmp = p[0];
    p[0] = p[k];
    p[k] = tmp;
    sort(p+1, p+n, cmp);

    hull[0] = p[0], hull[1] = p[1];
    m = 2;
    for (int i=2; i<n; i++) {
        while (m>=2 && cross(hull[m-2], p[i], hull[m-1])>=0)
            m--;
        hull[m++] = p[i];
    }
}
void solve() {   //旋转卡壳
    int k = 1, ans = 0;
    hull[m] = hull[0];
    for (int i=0; i<m; i++) {
        while (cross(hull[i+1], hull[k+1], hull[i])
                > cross(hull[i+1], hull[k], hull[i]))
            k = (k+1)%m;
        ans = max(ans, max(dist(hull[i], hull[k]), dist(hull[i+1], hull[k])));
    }
    printf("%d\n", ans);
}
int main() {
    scanf("%d", &n);
    for (int i=0; i<n; i++)
        scanf("%d%d", &p[i].x, &p[i].y);
    Graham();
    solve();

    return 0;
}


POJ:Triangle

求最大的三角形的面积。易知最大的三角形的三个顶点在凸包的顶点上。

先求出凸包。记Area(i, j, k)为三角形的面积,枚举每个顶点i,初始令j=i+1, k = j+1,然后旋转边(i,j)

如果Area(i,j,k) > Area(i,j,k+1) 更新最大面积,同时旋转j,k两个点,如果Area(i,j,k) < Area(i, j, k+1),k = k + 1

旋转的复杂度为O(N),枚举 i 的复杂度为O(N),总的复杂度为O(n^2)。

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std;
#define N 50005
struct POINT {
    int x, y;
} p[N], hull[N];
int n, m;
inline int cross(const POINT &p1, const POINT &p2, const POINT &p0) {
    return (p1.x-p0.x)*(p2.y-p0.y) - (p2.x-p0.x)*(p1.y-p0.y);
}
bool cmp(POINT a, POINT b) {
    int t = cross(a, b, p[0]);
    if (t > 0) return true;
    if (t < 0) return false;
    if (abs(a.x-p[0].x)+abs(a.y-p[0].y) < abs(b.x-p[0].x)+abs(b.y-p[0].y))
        return true;
    else return false;
}
void Graham() {
    int k = 0;
    for (int i=1; i<n; i++)
        if (p[i].x<p[k].x || (p[i].x==p[k].x && p[i].y<p[i].y))
            k = i;
    POINT tmp = p[0];
    p[0] = p[k];
    p[k] = tmp;
    sort(p+1, p+n, cmp);

    hull[0] = p[0], hull[1] = p[1];
    m = 2;
    for (int i=2; i<n; i++) {
        while (m>=2 && cross(hull[m-2], p[i], hull[m-1]) >= 0)
            m--;
        hull[m++] = p[i];
    }
}
void solve() {
    int ans = 0;
    int k, j, t;
    for (int i=0; i<m; i++) {
        j = (i + 1)%m;
        k = (j + 1)%m;
        while (j != i) {
            while (k!=i && cross(hull[j], hull[(k+1)%m], hull[i])
                > cross(hull[j], hull[k], hull[i]))
                k = (k + 1) % m;
            t = cross(hull[j], hull[k], hull[i]);
            if (t > ans) ans = t;
            j = (j + 1) % m;
        }
    }
    printf("%.2lf\n", fabs((double)ans/2.0));
}
int main() {
    while (scanf("%d", &n) == 1 && n!=-1) {
        for (int i=0; i<n; i++)
            scanf("%d %d", &p[i].x, &p[i].y);
        Graham();
        solve();
    }
    return 0;
}






你可能感兴趣的:(算法,struct,include)