OpenCV下的图像对比度增强之完整代码

 
OpenCV下的图像对比度增强之完整代码_第1张图片  OpenCV下的图像对比度增强之完整代码_第2张图片

// enforce.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"

#include "cv.h"
#include "highgui.h"
#include
#include
int ImageStretchByHistogram(IplImage *src,IplImage *dst);

int _tmain(int argc, _TCHAR* argv[])
{
    IplImage * pImg;   
    pImg=cvLoadImage("c:/lena.jpg",-1);

//创建一个灰度图像
    IplImage* GrayImage = cvCreateImage(cvGetSize(pImg), IPL_DEPTH_8U, 1);
    IplImage* dstGrayImage = cvCreateImage(cvGetSize(pImg), IPL_DEPTH_8U, 1);
    cvCvtColor(pImg, GrayImage, CV_BGR2GRAY);
    ImageStretchByHistogram(GrayImage,dstGrayImage);

  cvNamedWindow( "dstGrayImage", 1 ); //创建窗口
        cvNamedWindow( "GrayImage", 1 ); //创建窗口
        cvShowImage( "dstGrayImage", dstGrayImage ); //显示图像
        cvShowImage( "GrayImage", GrayImage ); //显示图像
        cvWaitKey(0); //等待按键

  cvDestroyWindow( "dstGrayImage" );//销毁窗口
        cvDestroyWindow( "GrayImage" );//销毁窗口
        cvReleaseImage( &pImg ); //释放图像
        cvReleaseImage( &GrayImage ); //释放图像
        cvReleaseImage( &dstGrayImage ); //释放图像

  return 0;
}

int ImageStretchByHistogram(IplImage *src,IplImage *dst)
/*************************************************
  Function:       
  Description:     因为摄像头图像质量差,需要根据直方图进行图像增强,
                   将图像灰度的域值拉伸到0-255
  Calls:         
  Called By:     
  Input:           单通道灰度图像                 
  Output:          同样大小的单通道灰度图像
  Return:         
  Others:           http://www.xiaozhou.net/ReadNews.asp?NewsID=771
  DATE:               2007-1-5
*************************************************/
{
    //p[]存放图像各个灰度级的出现概率;
    //p1[]存放各个灰度级之前的概率和,用于直方图变换;
    //num[]存放图象各个灰度级出现的次数;

    assert(src->width==dst->width);
    float p[256],p1[256],num[256];
    //清空三个数组
    memset(p,0,sizeof(p));
    memset(p1,0,sizeof(p1));
    memset(num,0,sizeof(num));

    int height=src->height;
    int width=src->width;
    long wMulh = height * width;

    //求存放图象各个灰度级出现的次数
    // to do use openmp
    for(int x=0;x     {
        for(int y=0;y         {
            uchar v=((uchar*)(src->imageData + src->widthStep*y))[x];
            num[v]++;
        }
    }

    //求存放图像各个灰度级的出现概率
    for(int i=0;i<256;i++)
    {
        p[i]=num[i]/wMulh;
    }

    //求存放各个灰度级之前的概率和
    for(int i=0;i<256;i++)
    {
        for(int k=0;k<=i;k++)
            p1[i]+=p[k];
    }

    //直方图变换
    // to do use openmp
    for(int x=0;x     {
        for(int y=0;y         {
            uchar v=((uchar*)(src->imageData + src->widthStep*y))[x];
            ((uchar*)(dst->imageData + dst->widthStep*y))[x]= p1[v]*255+0.5;           
        }
    }

    return 0;

}

ImageStretchByHistogram函数来自:

http://blog.csdn.net/hardVB/archive/2007/01/05/1474880.aspx

图像增强
1. 直方图均衡化的 Matlab 实现

1.1 imhist 函数
功能:计算和显示图像的色彩直方图
格式:imhist(I,n)
imhist(X,map)
说明:imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为256;imhist(X,map) 就算和显示索引色图像 X 的直方图,map 为调色板。用 stem(x,counts) 同样可以显示直方图。

1.2 imcontour 函数
功能:显示图像的等灰度值图
格式:imcontour(I,n),imcontour(I,v)
说明:n 为灰度级的个数,v 是有用户指定所选的等灰度级向量。

1.3 imadjust 函数
功能:通过直方图变换调整对比度
格式:J=imadjust(I,[low high],[bottom top],gamma)
newmap=imadjust(map,[low high],[bottom top],gamma)
说明:J=imadjust(I,[low high],[bottom top],gamma) 其中,gamma 为校正量r,[low high] 为原图像中要变换的灰度范围,[bottom top] 指定了变换后的灰度范围;newmap=imadjust(map,[low high],[bottom top],gamma) 调整索引色图像的调色板 map 。此时若 [low high] 和 [bottom top] 都为2×3的矩阵,则分别调整 R、G、B 3个分量。

1.4 histeq 函数
功能:直方图均衡化
格式:J=histeq(I,hgram)
J=histeq(I,n)
[J,T]=histeq(I,...)
newmap=histeq(X,map,hgram)
newmap=histeq(X,map)
[new,T]=histeq(X,...)
说明:J=histeq(I,hgram) 实现了所谓“直方图规定化”,即将原是图象 I 的直方图变换成用户指定的向量 hgram 。hgram 中的每一个元素都在 [0,1] 中;J=histeq(I,n) 指定均衡化后的灰度级数 n ,缺省值为 64;[J,T]=histeq(I,...) 返回从能将图像 I 的灰度直方图变换成图像 J 的直方图的变换 T ;newmap=histeq(X,map) 和 [new,T]=histeq(X,...) 是针对索引色图像调色板的直方图均衡。

2. 噪声及其噪声的 Matlab 实现
imnoise 函数
格式:J=imnoise(I,type)
J=imnoise(I,type,parameter)
说明:J=imnoise(I,type) 返回对图像 I 添加典型噪声后的有噪图像 J ,参数 type 和 parameter 用于确定噪声的类型和相应的参数。

3. 图像滤波的 Matlab 实现

3.1 conv2 函数
功能:计算二维卷积
格式:C=conv2(A,B)
C=conv2(Hcol,Hrow,A)
C=conv2(...,'shape')
说明:对于 C=conv2(A,B) ,conv2 的算矩阵 A 和 B 的卷积,若 [Ma,Na]=size(A), [Mb,Nb]=size(B), 则 size(C)=[Ma+Mb-1,Na+Nb-1]; C=conv2(Hcol,Hrow,A) 中,矩阵 A 分别与 Hcol 向量在列方向和 Hrow 向量在行方向上进行卷积;C=conv2(...,'shape') 用来指定 conv2 返回二维卷积结果部分,参数 shape 可取值如下:
》full 为缺省值,返回二维卷积的全部结果;
》same 返回二维卷积结果中与 A 大小相同的中间部分;
valid 返回在卷积过程中,未使用边缘补 0 部分进行计算的卷积结果部分,当 size(A)>size(B) 时,size(C)=[Ma-Mb+1,Na-Nb+1]。

3.2 conv 函数
功能:计算多维卷积
格式:与 conv2 函数相同

3.3 filter2函数
功能:计算二维线型数字滤波,它与函数 fspecial 连用
格式:Y=filter2(B,X)
Y=filter2(B,X,'shape')
说明:对于 Y=filter2(B,X) ,filter2 使用矩阵 B 中的二维 FIR 滤波器对数据 X 进行滤波,结果 Y 是通过二维互相关计算出来的,其大小与 X 一样;对于 Y=filter2(B,X,'shape') ,filter2 返回的 Y 是通过二维互相关计算出来的,其大小由参数 shape 确定,其取值如下:
》full 返回二维相关的全部结果,size(Y)>size(X);
》same 返回二维互相关结果的中间部分,Y 与 X 大小相同;
》valid 返回在二维互相关过程中,未使用边缘补 0 部分进行计算的结果部分,有 size(Y)<size(X) 。

3.4 fspecial 函数
功能:产生预定义滤波器
格式:H=fspecial(type)
H=fspecial('gaussian',n,sigma) 高斯低通滤波器
H=fspecial('sobel') Sobel 水平边缘增强滤波器
H=fspecial('prewitt') Prewitt 水平边缘增强滤波器
H=fspecial('laplacian',alpha) 近似二维拉普拉斯运算滤波器
H=fspecial('log',n,sigma) 高斯拉普拉斯(LoG)运算滤波器
H=fspecial('average',n) 均值滤波器
H=fspecial('unsharp',alpha) 模糊对比增强滤波器
说明:对于形式 H=fspecial(type) ,fspecial 函数产生一个由 type 指定的二维滤波器 H ,返回的 H 常与其它滤波器搭配使用。

4. 彩色增强的 Matlab 实现
4.1 imfilter函数

功能:真彩色增强
格式:B=imfilter(A,h)
说明:将原始图像 A 按指定的滤波器 h 进行滤波增强处理,增强后的图像 B 与 A 的尺寸和类型相同。
图像的变换
1. 离散傅立叶变换的 Matlab 实现
Matlab 函数 fft、fft2 和 fftn 分别可以实现一维、二维和 N 维 DFT 算法;而函数 ifft、ifft2 和 ifftn 则用来计算反 DFT 。这些函数的调用格式如下:
A=fft(X,N,DIM)
其中,X 表示输入图像;N 表示采样间隔点,如果 X 小于该数值,那么 Matlab 将会对 X 进行零填充,否则将进行截取,使之长度为 N ;DIM 表示要进行离散傅立叶变换。

A=fft2(X,MROWS,NCOLS)
其中,MROWS 和 NCOLS 指定对 X 进行零填充后的 X 大小。

A=fftn(X,SIZE)
其中,SIZE 是一个向量,它们每一个元素都将指定 X 相应维进行零填充后的长度。

函数 ifft、ifft2 和 ifftn的调用格式于对应的离散傅立叶变换函数一致。

例子:图像的二维傅立叶频谱

% 读入原始图像
I=imread('lena.bmp');
imshow(I)
% 求离散傅立叶频谱
J=fftshift(fft2(I));
figure;
imshow(log(abs(J)),[8,10])


2. 离散余弦变换的 Matlab 实现

2.1. dct2 函数
功能:二维 DCT 变换
格式:B=dct2(A)
B=dct2(A,m,n)
B=dct2(A,[m,n])
说明:B=dct2(A) 计算 A 的 DCT 变换 B ,A 与 B 的大小相同;B=dct2(A,m,n) 和 B=dct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大小为 m×n。

2.2. dict2 函数
功能:DCT 反变换
格式:B=idct2(A)
B=idct2(A,m,n)
B=idct2(A,[m,n])
说明:B=idct2(A) 计算 A 的 DCT 反变换 B ,A 与 B 的大小相同;B=idct2(A,m,n) 和 B=idct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大小为 m×n。

2.3. dctmtx函数
功能:计算 DCT 变换矩阵
格式:D=dctmtx(n)
说明:D=dctmtx(n) 返回一个 n×n 的 DCT 变换矩阵,输出矩阵 D 为 double 类型。


3. 图像小波变换的 Matlab 实现

3.1 一维小波变换的 Matlab 实现
(1) dwt 函数
功能:一维离散小波变换
格式:[cA,cD]=dwt(X,'wname')
[cA,cD]=dwt(X,Lo_D,Hi_D)
说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号 X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数
功能:一维离散小波反变换
格式:X=idwt(cA,cD,'wname')
X=idwt(cA,cD,Lo_R,Hi_R)
X=idwt(cA,cD,'wname',L)
X=idwt(cA,cD,Lo_R,Hi_R,L)
说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数
X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。

3.2 二维小波变换的 Matlab 实现

二维小波变换的函数
-------------------------------------------------
函数名 函数功能
---------------------------------------------------
dwt2 二维离散小波变换
wavedec2 二维信号的多层小波分解
idwt2 二维离散小波反变换
waverec2 二维信号的多层小波重构
wrcoef2 由多层小波分解重构某一层的分解信号
upcoef2 由多层小波分解重构近似分量或细节分量
detcoef2 提取二维信号小波分解的细节分量
appcoef2 提取二维信号小波分解的近似分量
upwlev2 二维小波分解的单层重构
dwtpet2 二维周期小波变换
idwtper2 二维周期小波反变换
-------------------------------------------------------------

(1) wcodemat 函数
功能:对数据矩阵进行伪彩色编码
格式:Y=wcodemat(X,NB,OPT,ABSOL)
Y=wcodemat(X,NB,OPT)
Y=wcodemat(X,NB)
Y=wcodemat(X)
说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;
OPT 指定了编码的方式(缺省值为 'mat'),即:
OPT='row' ,按行编码
OPT='col' ,按列编码
OPT='mat' ,按整个矩阵编码
ABSOL 是函数的控制参数(缺省值为 '1'),即:
ABSOL=0 时,返回编码矩阵
ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)

(2) dwt2 函数
功能:二维离散小波变换
格式:[cA,cH,cV,cD]=dwt2(X,'wname')
[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)
说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数 'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

(3) wavedec2 函数
功能:二维信号的多层小波分解
格式:[C,S]=wavedec2(X,N,'wname')
[C,S]=wavedec2(X,N,Lo_D,Hi_D)
说明:[C,S]=wavedec2(X,N,'wname') 使用小波基函数 'wname' 对二维信号 X 进行 N 层分解;[C,S]=wavedec2(X,N,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

(4) idwt2 函数
功能:二维离散小波反变换
格式:X=idwt2(cA,cH,cV,cD,'wname')
X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)
X=idwt2(cA,cH,cV,cD,'wname',S)
X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)
说明:X=idwt2(cA,cH,cV,cD,'wname') 由信号小波分解的近似信号 cA 和细节信号 cH、cH、cV、cD 经小波反变换重构原信号 X ;X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R) 使用指定的重构低通和高通滤波器 Lo_R 和 Hi_R 重构原信号 X ;X=idwt2(cA,cH,cV,cD,'wname',S) 和 X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S) 返回中心附近的 S 个数据点。

(5) waverec2 函数
说明:二维信号的多层小波重构
格式:X=waverec2(C,S,'wname')
X=waverec2(C,S,Lo_R,Hi_R)
说明:X=waverec2(C,S,'wname') 由多层二维小波分解的结果 C、S 重构原始信号 X ,'wname' 为使用的小波基函数;X=waverec2(C,S,Lo_R,Hi_R) 使用重构低通和高通滤波器 Lo_R 和 Hi_R 重构原信号。


图像处理工具箱
1. 图像和图像数据
缺省情况下,MATLAB将图像中的数据存储为双精度类型(double),64位浮点
数,所需存储量很大;MATLAB还支持另一种类型无符号整型(uint8),即图像矩
阵中每个数据占用1个字节。
在使用MATLAB工具箱时,一定要注意函数所要求的参数类型。另外,uint8
与double两种类型数据的值域不同,编程需注意值域转换
从uint8到double的转换
---------------------------------------------
图像类型 MATLAB语句
---------------------------------------------
索引色 B=double(A)+1
索引色或真彩色 B=double(A)/255
二值图像 B=double(A)
---------------------------------------------

从double到uint8的转换
---------------------------------------------
图像类型 MATLAB语句
---------------------------------------------
索引色 B=uint8(round(A-1))
索引色或真彩色 B=uint8(round(A*255))
二值图像 B=logical(uint8(round(A)))
---------------------------------------------

2. 图像处理工具箱所支持的图像类型

2.1 真彩色图像
R、G、B三个分量表示一个像素的颜色。如果要读取图像中(100,50)处的像素值,
可查看三元数据(100,50,1:3)。
真彩色图像可用双精度存储,亮度值范围是[0,1];比较符合习惯的存储方法是用无
符号整型存储,亮度值范围[0,255]

2.2 索引色图像
包含两个结构,一个是调色板,另一个是图像数据矩阵。调色板是一个有3列和若干行
的色彩映象矩阵,矩阵每行代表一种颜色,3列分别代表红、绿、蓝色强度的双精度数。

注意:MATLAB中调色板色彩强度[0,1],0代表最暗,1代表最亮。
常用颜色的RGB值
--------------------------------------------
颜色 R G B 颜色 R G B
--------------------------------------------
黑 0 0 1 洋红 1 0 1
白 1 1 1 青蓝 0 1 1
红 1 0 0 天蓝 0.67 0 1
绿 0 1 0 橘黄 1 0.5 0
蓝 0 0 1 深红 0.5 0 0
黄 1 1 0 灰 0.5 0.5 0.5
--------------------------------------------
产生标准调色板的函数
-------------------------------------------------
函数名 调色板
-------------------------------------------------
Hsv 色彩饱和度,以红色开始,并以红色结束
Hot 黑色-红色-黄色-白色
Cool 青蓝和洋红的色度
Pink 粉红的色度
Gray 线型灰度
Bone 带蓝色的灰度
Jet Hsv的一种变形,以蓝色开始,以蓝色结束
Copper 线型铜色度
Prim 三棱镜,交替为红、橘黄、黄、绿和天蓝
Flag 交替为红、白、蓝和黑
--------------------------------------------------
缺省情况下,调用上述函数灰产生一个64×3的调色板,用户也可指定调色板大小。

索引色图像数据也有double和uint8两种类型。
当图像数据为double类型时,值1代表调色板中的第1行,值2代表第2行……
如果图像数据为uint8类型,0代表调色板的第一行,,值1代表第2行……
2.3 灰度图像
存储灰度图像只需要一个数据矩阵。
数据类型可以是double,[0,1];也可以是uint8,[0,255]
2.4 二值图像
二值图像只需一个数据矩阵,每个像素只有两个灰度值,可以采用uint8或double类型存储。
MATLAB工具箱中以二值图像作为返回结果的函数都使用uint8类型。


2.5 图像序列
MATLAB工具箱支持将多帧图像连接成图像序列。
图像序列是一个4维数组,图像帧的序号在图像的长、宽、颜色深度之后构成第4维。
分散的图像也可以合并成图像序列,前提是各图像尺寸必须相同,若是索引色图像,
调色板也必须相同。
可参考cat()函数 A=cat(4,A1,A2,A3,A4,A5)

3. MATLAB图像类型转换
图像类型转换函数
---------------------------------------------------------------------------
函数名 函数功能
---------------------------------------------------------------------------
dither 图像抖动,将灰度图变成二值图,或将真彩色图像抖动成索引色图像
gray2ind 将灰度图像转换成索引图像
grayslice 通过设定阈值将灰度图像转换成索引色图像
im2bw 通过设定亮度阈值将真彩色、索引色、灰度图转换成二值图
ind2gray 将索引色图像转换成灰度图像
ind2rgb 将索引色图像转换成真彩色图像
mat2gray 将一个数据矩阵转换成一副灰度图
rgb2gray 将一副真彩色图像转换成灰度图像
rgb2ind 将真彩色图像转换成索引色图像
----------------------------------------------------------------------------

4. 图像文件的读写和查询

4.1 图形图像文件的读取
利用函数imread()可完成图形图像文件的读取,语法:

A=imread(filename,fmt)
[X,map]=imread(filename,fmt)
[...]=imread(filename)
[...]=imread(filename,idx) (只对TIF格式的文件)
[...]=imread(filename,ref) (只对HDF格式的文件)

通常,读取的大多数图像均为8bit,当这些图像加载到内存中时,Matlab就将其存放
在类uint8中。此为Matlab还支持16bit的PNG和TIF图像,当读取这类文件时,Matlab就将
其存贮在uint16中。

注意:对于索引图像,即使图像阵列的本身为类uint8或类uint16,imread函数仍将
颜色映象表读取并存贮到一个双精度的浮点类型的阵列中。

4.2 图形图像文件的写入
使用imwrite函数,语法如下:

imwrite(A,filename,fmt)
imwrite(X,map,filename,fmt)
imwrite(...,filename)
imwrite(...,parameter,value)

当利用imwrite函数保存图像时,Matlab缺省的方式是将其简化道uint8的数据格式。

4.3 图形图像文件信息的查询 imfinfo()函数

5. 图像文件的显示

5.1 索引图像及其显示

方法一:
image(X)
colormap(map)

方法二:
imshow(X,map)

5.2 灰度图像及其显示
Matlab 7.0 中,要显示一副灰度图像,可以调用函数 imshow 或 imagesc (即
imagescale,图像缩放函数)

(1) imshow 函数显示灰度图像
使用 imshow(I) 或 使用明确指定的灰度级书目:imshow(I,32)

由于Matlab自动对灰度图像进行标度以适合调色板的范围,因而可以使用自定义
大小的调色板。其调用格式如下:
imshow(I,[low,high])
其中,low 和 high 分别为数据数组的最小值和最大值。

(2) imagesc 函数显示灰度图像
下面的代码是具有两个输入参数的 imagesc 函数显示一副灰度图像
imagesc(1,[0,1]);
colormap(gray);
imagesc 函数中的第二个参数确定灰度范围。灰度范围中的第一个值(通常是0),
对应于颜色映象表中的第一个值(颜色),第二个值(通常是1)则对应与颜色映象表
中的最后一个值(颜色)。灰度范围中间的值则线型对应与颜色映象表中剩余的值(颜色)。

在调用 imagesc 函数时,若只使用一个参数,可以用任意灰度范围显示图像。在该
调用方式下,数据矩阵中的最小值对应于颜色映象表中的第一个颜色值,数据矩阵中的最大
值对应于颜色映象表中的最后一个颜色值。

5.3 RGB 图像及其显示
(1) image(RGB)
不管RGB图像的类型是double浮点型,还是 uint8 或 uint16 无符号整数型,Matlab都
能通过 image 函数将其正确显示出来。

RGB8 = uint8(round(RGB64×255)); % 将 double 浮点型转换为 uint8 无符号整型
RGB64 = double(RGB8)/255; % 将 uint8 无符号整型转换为 double 浮点型
RGB16 = uint16(round(RGB64×65535)); % 将 double 浮点型转换为 uint16 无符号整型
RGB64 = double(RGB16)/65535; % 将 uint16 无符号整型转换为 double 浮点型

(2) imshow(RGB) 参数是一个 m×n×3 的数组

5.4 二进制图像及其显示

(1) imshow(BW)
在 Matlab 7.0 中,二进制图像是一个逻辑类,仅包括 0 和 1 两个数值。像素 0 显示
为黑色,像素 1 显示为白色。
显示时,也可通过NOT(~)命令,对二进制图象进行取反,使数值 0 显示为白色;1 显示
为黑色。
例如: imshow(~BW)

(2) 此外,还可以使用一个调色板显示一副二进制图像。如果图形是 uint8 数据类型,
则数值 0 显示为调色板的第一个颜色,数值 1 显示为第二个颜色。
例如: imshow(BW,[1 0 0;0 0 1])

5.5 直接从磁盘显示图像
可使用一下命令直接进行图像文件的显示:
imshow filename
其中,filename 为要显示的图像文件的文件名。

如果图像是多帧的,那么 imshow 将仅显示第一帧。但需注意,在使用这种方式时,图像
数据没有保存在Matlab 7.0 工作平台。如果希望将图像装入工作台中,需使用 getimage 函
数,从当前的句柄图形图像对象中获取图像数据,
命令形式为: rgb = getimage;

你可能感兴趣的:(filter,matlab,存储,图形,图像处理,fft)