Object Recognition and Scene Understanding(四)OpenCV SVM+HOG分类

通过前面的介绍,可以对hog特征利用svm训练,得到简单的二分类模型,利用分类模型可以实现二分。

参考:http://blog.csdn.net/yongshengsilingsa/article/details/7535496

 

OpenCV官方的SVM代码在http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

在http://blog.csdn.net/sangni007/article/details/7471222看到一段还不错的代码,结构清楚,虽然注释比较少,但很有参考价值。

 

需要自己设置一下图片大小,因为太懒,直接把改好的程序放过来:

#include "stdafx.h"

#include "cv.h"  
#include "highgui.h"  
#include "stdafx.h"  
#include <ml.h>  
#include <iostream>  
#include <fstream>  
#include <string>  
#include <vector>  
using namespace cv;  
using namespace std;  
  
  
int main(int argc, char** argv)    
{    
	int ImgWidht = 120;
	int ImgHeight = 120;
    vector<string> img_path;  
    vector<int> img_catg;  
    int nLine = 0;  
    string buf;  
    ifstream svm_data( "E:/apple/SVM_DATA.txt" );  
    unsigned long n;  
  
    while( svm_data )  
    {  
        if( getline( svm_data, buf ) )  
        {  
            nLine ++;  
            if( nLine < 5 )  
            {  
				img_catg.push_back(1);
				img_path.push_back( buf );//图像路径 
            }  
            else  
            {  
				img_catg.push_back(0);
				img_path.push_back( buf );//图像路径 
            }  
        }  
    }  
    svm_data.close();//关闭文件  
  
    Mat data_mat, res_mat;  
    int nImgNum = nLine;            //读入样本数量  
    ////样本矩阵,nImgNum:横坐标是样本数量, WIDTH * HEIGHT:样本特征向量,即图像大小  
	//data_mat = Mat::zeros( nImgNum, 12996, CV_32FC1 );    
    //类型矩阵,存储每个样本的类型标志  
    res_mat = Mat::zeros( nImgNum, 1, CV_32FC1 );  
  
    Mat src;  
    Mat trainImg = Mat::zeros(ImgHeight, ImgWidht, CV_8UC3);//需要分析的图片  
  
    for( string::size_type i = 0; i != img_path.size(); i++ )  
    {  
		src = imread(img_path[i].c_str(), 1);   
  
        cout<<" processing "<<img_path[i].c_str()<<endl;  
         
		resize(src, trainImg, cv::Size(ImgWidht,ImgHeight), 0, 0, INTER_CUBIC);
        HOGDescriptor *hog=new HOGDescriptor(cvSize(ImgWidht,ImgHeight),cvSize(16,16),cvSize(8,8),cvSize(8,8), 9);  //具体意思见参考文章1,2     
        vector<float>descriptors;//结果数组     
        hog->compute(trainImg, descriptors, Size(1,1), Size(0,0)); //调用计算函数开始计算
		if (i==0)
		{
			 data_mat = Mat::zeros( nImgNum, descriptors.size(), CV_32FC1 ); //根据输入图片大小进行分配空间 
		}
        cout<<"HOG dims: "<<descriptors.size()<<endl;   
        n=0;  
        for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)  
        {  
			data_mat.at<float>(i,n) = *iter;  
            n++;  
        }  
        //cout<<SVMtrainMat->rows<<endl;  
	    res_mat.at<float>(i, 0) =  img_catg[i];  
        cout<<" end processing "<<img_path[i].c_str()<<" "<<img_catg[i]<<endl;  
    }  
               
    CvSVM svm = CvSVM();
    CvSVMParams param;  
    CvTermCriteria criteria;    
    criteria = cvTermCriteria( CV_TERMCRIT_EPS, 1000, FLT_EPSILON );    
    param = CvSVMParams( CvSVM::C_SVC, CvSVM::RBF, 10.0, 0.09, 1.0, 10.0, 0.5, 1.0, NULL, criteria );   
	
/*    
    SVM种类:CvSVM::C_SVC    
    Kernel的种类:CvSVM::RBF    
    degree:10.0(此次不使用)    
    gamma:8.0    
    coef0:1.0(此次不使用)    
    C:10.0    
    nu:0.5(此次不使用)    
    p:0.1(此次不使用)    
    然后对训练数据正规化处理,并放在CvMat型的数组里。    
                                                        */       
    //☆☆☆☆☆☆☆☆☆(5)SVM学习☆☆☆☆☆☆☆☆☆☆☆☆         
    svm.train( data_mat, res_mat, Mat(), Mat(), param );    
    //☆☆利用训练数据和确定的学习参数,进行SVM学习☆☆☆☆     
    svm.save( "E:/apple/SVM_DATA.xml" ); 
  
    //检测样本  
    vector<string> img_tst_path;  
    ifstream img_tst( "E:/apple/SVM_TEST.txt" );  
    while( img_tst )  
    {  
        if( getline( img_tst, buf ) )  
        {  
            img_tst_path.push_back( buf );  
        }  
    }  
    img_tst.close();  
  
	Mat test;
    char line[512];  
    ofstream predict_txt( "E:/apple/SVM_PREDICT.txt" );  
    for( string::size_type j = 0; j != img_tst_path.size(); j++ )  
    {  
        test = imread( img_tst_path[j].c_str(), 1);//读入图像   
        resize(test, trainImg, cv::Size(ImgWidht,ImgHeight), 0, 0, INTER_CUBIC);//要搞成同样的大小才可以检测到       
        HOGDescriptor *hog=new HOGDescriptor(cvSize(ImgWidht,ImgHeight),cvSize(16,16),cvSize(8,8),cvSize(8,8),9);  //具体意思见参考文章1,2     
        vector<float>descriptors;//结果数组     
        hog->compute(trainImg, descriptors,Size(1,1), Size(0,0)); //调用计算函数开始计算hog
		cout<<"The Detection Result:"<<endl;
        cout<<"HOG dims: "<<descriptors.size()<<endl;  
        Mat SVMtrainMat =  Mat::zeros(1,descriptors.size(),CV_32FC1);  
        n=0;  
        for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)  
        {  
			SVMtrainMat.at<float>(0,n) = *iter;  
            n++;  
        }  
  
        int ret = svm.predict(SVMtrainMat);  
		std::sprintf( line, "%s %d\r\n", img_tst_path[j].c_str(), ret ); 
		printf("%s %d\r\n", img_tst_path[j].c_str(), ret);
		getchar();
        predict_txt<<line;  
    }  
    predict_txt.close();  
  
return 0;  
} 


 

你可能感兴趣的:(Object Recognition and Scene Understanding(四)OpenCV SVM+HOG分类)