HDU 3435 A new Graph Game(费用流)
http://acm.hdu.edu.cn/showproblem.php?pid=3435
题意:
给你一个N个节点M条边的无向图,要你求该图有1个或多个不相交有向环(哈密顿回路)构成时,所有这些有向环的最小权值.
分析:
本题之前用KM算法做过:
http://blog.csdn.net/u013480600/article/details/38780451
要注意,可以从本题的第3个用例的输出可以看出,本题的无向边,其实就是等效于两条方向相反的有向边.(如果本题的无向边==一条有向边,那么用例3无解). 所以对于本题来说无向图其实就是有向图的所有边必须添加两边(仅此而已),本题与之前所做HDU1853几乎一样的解法,详细可以参考HDU1853的分析:
http://blog.csdn.net/u013480600/article/details/39159407
建图如下(论证参考HDU1853):
源点s编号0,n个节点编号1到n和n+1到2*n, 汇点t编号2*n+1.
从源点s到第i个点有边 (s, i, 1, 0)
如果有无向边(i,j,w),那么有两条有向边 (i, j+n, 1, w) 和 (j, i+n, 1, w)
每个节点i到汇点t有边 (i+n, t, 1, 0)
最终我们求得最大流如果==n的话,最小费用就是解. 否则输出NO.
AC代码: C++3890MS, G++3671MS
#include<cstdio> #include<cstring> #include<queue> #include<vector> #include<algorithm> #define INF 1e9 using namespace std; const int maxn = 2000+5; struct Edge { int from,to,cap,flow,cost; Edge(){} Edge(int from,int to,int cap,int flow,int cost):from(from),to(to),cap(cap),flow(flow),cost(cost){} }; struct MCMF { int n,m,s,t; vector<Edge> edges; vector<int> G[maxn]; bool inq[maxn]; int d[maxn]; int a[maxn]; int p[maxn]; void init(int n,int s,int t) { this->n=n, this->s=s, this->t=t; edges.clear(); for(int i=0;i<n;++i) G[i].clear(); } void AddEdge(int from,int to,int cap,int cost) { edges.push_back(Edge(from,to,cap,0,cost)); edges.push_back(Edge(to,from,0,0,-cost)); m=edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BellmanFord(int &flow,int &cost) { for(int i=0;i<n;++i) d[i]=INF; queue<int> Q; memset(inq,0,sizeof(inq)); d[s]=0,inq[s]=true,Q.push(s),a[s]=INF,p[s]=0; while(!Q.empty()) { int u=Q.front(); Q.pop(); inq[u]=false; for(int i=0;i<G[u].size();++i) { Edge &e=edges[G[u][i]]; if(e.cap>e.flow && d[e.to]>d[u]+e.cost) { d[e.to] = d[u]+e.cost; a[e.to] = min(a[u],e.cap-e.flow); p[e.to] = G[u][i]; if(!inq[e.to]){inq[e.to]=true; Q.push(e.to);} } } } if(d[t]==INF) return false; flow += a[t]; cost += d[t]*a[t]; int u=t; while(u!=s) { edges[p[u]].flow +=a[t]; edges[p[u]^1].flow -=a[t]; u = edges[p[u]].from; } return true; } int solve(int num) { int flow=0,cost=0; while(BellmanFord(flow,cost)); return flow ==num ? cost:-1; } }MM; int dist[maxn][maxn]; int main() { int T; scanf("%d",&T); for(int kase=1;kase<=T;++kase) { int n,m,src,dst; scanf("%d%d",&n,&m); src=0, dst=2*n+1; MM.init(2*n+2,src,dst); memset(dist,-1,sizeof(dist)); while(m--) { int u,v,w; scanf("%d%d%d",&u,&v,&w); if(dist[u][v]==-1 || dist[u][v]>w) { dist[u][v]=dist[v][u]=w; } } for(int i=1;i<=n;++i) for(int j=i+1;j<=n;++j)if(dist[i][j]!=-1) { MM.AddEdge(i,j+n,1,dist[i][j]); MM.AddEdge(j,i+n,1,dist[i][j]); } for(int i=1;i<=n;++i) { MM.AddEdge(src,i,1,0); MM.AddEdge(i+n,dst,1,0); } int ans=MM.solve(n); if(ans==-1) printf("Case %d: NO\n",kase); else printf("Case %d: %d\n",kase,ans); } return 0; }