Boyer-Moore算法

Boyer-Moore 算法形象描述:

Boyer-Moore算法不仅效率高,而且构思巧妙,容易理解。1977年,德克萨斯大学的Robert S. Boyer教授和J Strother Moore教授发明了这种算法。

下面,我根据Moore教授自己的例子来解释这种算法。

1.

Boyer-Moore算法_第1张图片

假定字符串为"HERE IS A SIMPLE EXAMPLE",搜索词为"EXAMPLE"。

2.

Boyer-Moore算法_第2张图片

首先,"字符串"与"搜索词"头部对齐,从尾部开始比较。

这是一个很聪明的想法,因为如果尾部字符不匹配,那么只要一次比较,就可以知道前7个字符(整体上)肯定不是要找的结果。

我们看到,"S"与"E"不匹配。这时,"S"就被称为"坏字符"(bad character),即不匹配的字符。我们还发现,"S"不包含在搜索词"EXAMPLE"之中,这意味着可以把搜索词直接移到"S"的后一位。

3.

Boyer-Moore算法_第3张图片

依然从尾部开始比较,发现"P"与"E"不匹配,所以"P"是"坏字符"。但是,"P"包含在搜索词"EXAMPLE"之中。所以,将搜索词后移两位,两个"P"对齐。

4.

Boyer-Moore算法_第4张图片

我们由此总结出"坏字符规则"

  后移位数 = 坏字符的位置 - 搜索词中的上一次出现位置

如果"坏字符"不包含在搜索词之中,则上一次出现位置为 -1。

以"P"为例,它作为"坏字符",出现在搜索词的第6位(从0开始编号),在搜索词中的上一次出现位置为4,所以后移 6 - 4 = 2位。再以前面第二步的"S"为例,它出现在第6位,上一次出现位置是 -1(即未出现),则整个搜索词后移 6 - (-1) = 7位。

5.

Boyer-Moore算法_第5张图片

依然从尾部开始比较,"E"与"E"匹配。

6.

Boyer-Moore算法_第6张图片

比较前面一位,"LE"与"LE"匹配。

7.

Boyer-Moore算法_第7张图片

比较前面一位,"PLE"与"PLE"匹配。

8.

Boyer-Moore算法_第8张图片

比较前面一位,"MPLE"与"MPLE"匹配。我们把这种情况称为"好后缀"(good suffix),即所有尾部匹配的字符串。注意,"MPLE"、"PLE"、"LE"、"E"都是好后缀。

9.

Boyer-Moore算法_第9张图片

比较前一位,发现"I"与"A"不匹配。所以,"I"是"坏字符"。

10.

Boyer-Moore算法_第10张图片

根据"坏字符规则",此时搜索词应该后移 2 - (-1)= 3 位。问题是,此时有没有更好的移法?

11.

Boyer-Moore算法_第11张图片

我们知道,此时存在"好后缀"。所以,可以采用"好后缀规则"

  后移位数 = 好后缀的位置 - 搜索词中的上一次出现位置

举例来说,如果字符串"ABCDAB"的后一个"AB"是"好后缀"。那么它的位置是5(从0开始计算,取最后的"B"的值),在"搜索词中的上一次出现位置"是1(第一个"B"的位置),所以后移 5 - 1 = 4位,前一个"AB"移到后一个"AB"的位置。

再举一个例子,如果字符串"ABCDEF"的"EF"是好后缀,则"EF"的位置是5 ,上一次出现的位置是 -1(即未出现),所以后移 5 - (-1) = 6位,即整个字符串移到"F"的后一位。

这个规则有三个注意点:

  (1)"好后缀"的位置以最后一个字符为准。假定"ABCDEF"的"EF"是好后缀,则它的位置以"F"为准,即5(从0开始计算)。

  (2)如果"好后缀"在搜索词中只出现一次,则它的上一次出现位置为 -1。比如,"EF"在"ABCDEF"之中只出现一次,则它的上一次出现位置为-1(即未出现)。

  (3)如果"好后缀"有多个,则除了最长的那个"好后缀",其他"好后缀"的上一次出现位置必须在头部。比如,假定"BABCDAB"的"好后缀"是"DAB"、"AB"、"B",请问这时"好后缀"的上一次出现位置是什么?回答是,此时采用的好后缀是"B",它的上一次出现位置是头部,即第0位。这个规则也可以这样表达:如果最长的那个"好后缀"只出现一次,则可以把搜索词改写成如下形式进行位置计算"(DA)BABCDAB",即虚拟加入最前面的"DA"。

回到上文的这个例子。此时,所有的"好后缀"(MPLE、PLE、LE、E)之中,只有"E"在"EXAMPLE"还出现在头部,所以后移 6 - 0 = 6位。

12.

Boyer-Moore算法_第12张图片

可以看到,"坏字符规则"只能移3位,"好后缀规则"可以移6位。所以,Boyer-Moore算法的基本思想是,每次后移这两个规则之中的较大值。

更巧妙的是,这两个规则的移动位数,只与搜索词有关,与原字符串无关。因此,可以预先计算生成《坏字符规则表》和《好后缀规则表》。使用时,只要查表比较一下就可以了。

13.

Boyer-Moore算法_第13张图片

继续从尾部开始比较,"P"与"E"不匹配,因此"P"是"坏字符"。根据"坏字符规则",后移 6 - 4 = 2位。

14.

Boyer-Moore算法_第14张图片

从尾部开始逐位比较,发现全部匹配,于是搜索结束。如果还要继续查找(即找出全部匹配),则根据"好后缀规则",后移 6 - 0 = 6位,即头部的"E"移到尾部的"E"的位置。

转自:http://www.ruanyifeng.com/blog/2013/05/boyer-moore_string_search_algorithm.html


Boyer-Moore算法详细描述:

后缀匹配,是指模式串的比较从右到左,模式串的移动也是从左到右的匹配过程,经典的BM算法其实是对后缀蛮力匹配算法的改进。所以还是先从最简单的后缀蛮力匹配算法开始。下面直接给出伪代码,注意这一行代码:j++;BM算法所做的唯一的事情就是改进了这行代码,即模式串不是每次移动一步,而是根据已经匹配的后缀信息,从而移动更多的距离。

j = 0;
while (j <= strlen(T) - strlen(P)) {
   for (i = strlen(P) - 1; i >= 0 && P[i] ==T[i + j]; --i)
   if (i < 0)
      match;
   else
      ++j;
}


为了实现更快移动模式串,BM算法定义了两个规则,好后缀规则和坏字符规则,如下图可以清晰的看出他们的含义。利用好后缀和坏字符可以大大加快模式串的移动距离,不是简单的++j,而是j+=max (shift(好后缀), shift(坏字符))
Boyer-Moore算法_第15张图片

先来看如何根据坏字符来移动模式串,shift(坏字符)分为两种情况:

  • 坏字符没出现在模式串中,这时可以把模式串移动到坏字符的下一个字符,继续比较,如下图:

  • 坏字符出现在模式串中,这时可以把模式串第一个出现的坏字符和母串的坏字符对齐,当然,这样可能造成模式串倒退移动,如下图:

Boyer-Moore算法_第16张图片
为了用代码来描述上述的两种情况,设计一个数组bmBc['k'],表示坏字符‘k’在模式串中出现的位置距离模式串末尾的最大长度,那么当遇到坏字符的时候,模式串可以移动距离为: shift(坏字符) = bmBc[T[i]]-(m-1-i)。如下图:
Boyer-Moore算法_第17张图片
数组bmBc的创建非常简单,直接贴出代码如下:

void preBmBc(char *x, int m, int bmBc[]) {
    int i;
    for (i = 0; i < ASIZE; ++i)
         bmBc[i] = m;
    for (i = 0; i < m - 1; ++i)
         bmBc[x[i]] = m - i - 1;
}


模式串中有子串匹配上好后缀,此时移动模式串,让该子串和好后缀对齐即可,如果超过一个子串匹配上好后缀,则选择最靠左边的子串对齐。再来看如何根据好后缀规则移动模式串,shift(好后缀)分为三种情况:

  • Boyer-Moore算法_第18张图片

  • 模式串中没有子串匹配上后后缀,此时需要寻找模式串的一个最长前缀,并让该前缀等于好后缀的后缀,寻找到该前缀后,让该前缀和好后缀对齐即可。

    Boyer-Moore算法_第19张图片

  • 模式串中没有子串匹配上后后缀,并且在模式串中找不到最长前缀,让该前缀等于好后缀的后缀。此时,直接移动模式到好后缀的下一个字符。

    Boyer-Moore算法_第20张图片

为了实现好后缀规则,需要定义一个数组suffix[],其中suffix[i] = s 表示以i为边界,与模式串后缀匹配的最大长度,如下图所示,用公式可以描述:满足P[i-s, i] == P[m-s, m]的最大长度s。

构建suffix数组的代码如下:

suffix[m-1]=m;
for (i=m-2;i>=0;--i){
    q=i;
    while(q>=0&&P[q]==P[m-1-i+q])
        --q;
    suffix[i]=i-q;
}

模式串中有子串匹配上好后缀有了suffix数组,就可以定义bmGs[]数组,bmGs[i] 表示遇到好后缀时,模式串应该移动的距离,其中i表示好后缀前面一个字符的位置(也就是坏字符的位置),构建bmGs数组分为三种情况,分别对应上述的移动模式串的三种情况

  • 模式串中没有子串匹配上好后缀,但找到一个最大前缀

    Boyer-Moore算法_第21张图片

  • 模式串中没有子串匹配上好后缀,但找不到一个最大前缀

构建bmGs数组的代码如下:

void preBmGs(char *x, int m, int bmGs[]) {
   int i, j, suff[XSIZE];
   suffixes(x, m, suff);
   for (i = 0; i < m; ++i)
      bmGs[i] = m;
   j = 0;
   for (i = m - 1; i >= 0; --i)
      if (suff[i] == i + 1)
         for (; j < m - 1 - i; ++j)
            if (bmGs[j] == m)
               bmGs[j] = m - 1 - i;
   for (i = 0; i <= m - 2; ++i)
      bmGs[m - 1 - suff[i]] = m - 1 - i;
}


再来重写一遍BM算法:

j = 0;
while (j <= strlen(T) - strlen(P)) {
   for (i = strlen(P) - 1; i >= 0 && P[i] ==T[i + j]; --i)
   if (i < 0)
      match;
   else
      j += max(bmGs[i], bmBc[T[i]]-(m-1-i));
}

考虑模式串匹配不上母串的最坏情况,后缀蛮力匹配算法的时间复杂度最差是O(n×m),最好是O(n),其中n为母串的长度,m为模式串的长度。BM算法时间复杂度最好是O(n/(m+1)),最差是 O(n)

转自: http://www.oschina.net/question/12_23429

你可能感兴趣的:(Boyer-Moore算法)