上拉电阻/0欧姆电阻/TTL&CMOS

http://www.52rd.com/Blog/Detail_RD.Blog_leonlxw_12840.html

上拉电阻

一、定义:
上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!
上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

二、上下拉电阻作用
1
、提高電壓准位:a.TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V), 这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。b.OC门电路必须加上拉电阻,以提高输出的搞电平值。
2
、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻
3N/A pin防靜電、防干擾:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗, 提供泄荷通路。同時管脚悬空就比较容易接受外界的电磁干扰。
4
、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

5、預設空閒狀態/缺省電位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。在I 2C 总线等总线上,空闲时的状态是由上下拉电阻获得

6. 提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。从而提高芯片输入信号的噪声容限增强抗干扰能力。

三、上拉电阻阻值的选择原则包括:
1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2
、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3
、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑
以上三点,通常在1k10k之间选取。对下拉电阻也有类似道理

四、原理:

上拉电阻实际上是集电极输出的负载电阻。不管是在开关应用和模拟放大,此电阻的选则都不是拍脑袋的。工作在线性范围就不多说了,在这里是讨论的是晶体管是开关应用,所以只谈开关方式。找个TTL器件的资料单独看末级就可以了,内部都有负载电阻根据不同驱动能力和速度要求这个电阻值不同,低功耗的电阻值大,速度快的电阻值小。但芯片制造商很难满足应用的需要不可能同种功能芯片做许多种,因此干脆不做这个负载电阻,改由使用者自己自由选择外接,所以就出现OCOD输 出的芯片。由于数字应用时晶体管工作在饱和和截止区,对负载电阻要求不高,电阻值小到只要不小到损坏末级晶体管就可以,大到输出上升时间满足设计要求就 可,随便选一个都可以正常工作。但是一个电路设计是否优秀这些细节也是要考虑的。集电极输出的开关电路不管是开还是关对地始终是通的,晶体管导通时电流从 负载电阻经导通的晶体管到地,截止时电流从负载电阻经负载的输入电阻到地,如果负载电阻选择小点功耗就会大,这在电池供电和要求功耗小的系统设计中是要尽 量避免的,如果电阻选择大又会带来信号上升沿的延时,因为负载的输入电容在上升沿是通过无源的上拉电阻充电,电阻越大上升时间越长,下降沿是通过有源晶体 管放电,时间取决于器件本身。因此设计者在选择上拉电阻值时,要根据系统实际情况在功耗和速度上兼顾。

3.IC(MOS工艺)的角度,分别就输入/输出引脚做一解释:
1.
对芯片输入管脚, 若在系统板上悬空(未与任何输出脚或驱动相接)是比较危险的.因为此时很有可能输入管脚内部电容电荷累积使之达到中间电平(比如1.5V), 而使得输入缓冲器的PMOS管和NMOS管同时导通, 这样一来就在电源和地之间形成直接通路, 产生较大的漏电流, 时间一长就可能损坏芯片. 并且因为处于中间电平会导致内部电路对其逻辑(01)判断混乱. 接上上拉或下拉电阻后, 内部点容相应被充()电至高()电平, 内部缓冲器也只有NMOS(PMOS)管导通, 不会形成电源到地的直流通路. (至于防止静电造成损坏, 因芯片管脚设计中一般会加保护电路, 反而无此必要).
2.
对于输出管脚:
1)
正常的输出管脚(push-pull), 一般没有必要接上拉或下拉电阻.
2)OD
OC(漏极开路或集电极开路)型管脚,
这种类型的管脚需要外接上拉电阻实现线与功能(此时多个输出可直接相连. 典型应用是: 系统板上多个芯片的INT(中断信号)输出直接相连, 再接上一上拉电阻, 然后输入MCUINT引脚, 实现中断报警功能).
其工作原理是:
在正常工作情况下, OD型管脚内部的NMOS管关闭, 对外部而言其处于高阻状态, 外接上拉电阻使输出位于高电平(无效中断状态); 当有中断需求时, OD型管脚内部的NMOS管接通, 因其导通电阻远远小于上拉电阻, 使输出位于低电平(有效中断状态). 针对MOS 电路上下拉电阻阻值以几十至几百K为宜.

(
: 此回答未涉及TTL工艺的芯片, 也未曾考虑高频PCB设计时需考虑的阻抗匹配, 电磁干扰等效应.)

1, 芯片引脚上注明的上拉或下拉电阻, 是指设计在芯片引脚内部的一个电阻或等效电阻. 设计这个电阻的目的, 是为了当用户不需要用这个引脚的功能时, 不用外加元件, 就可以置这个引脚到缺省的状态. 而不会使 CMOS 输入端悬空. 使用时要注意如果这个缺省值不是你所要的, 你应该把这个输入端直接连到你需要的状态.
2,
这个引脚如果是上拉的话, 可以用于 "线或" 逻辑. 外接漏极开路或集电极开路输出的其他芯片. 组成负逻辑或输入. 如果是下拉的话, 可以组成正逻辑 "线或", 但外接只能是 CMOS 的高电平漏极开路的芯片输出, 这是因为 CMOS 输出的高, 低电平分别由 PMOS NMOS 的漏极给出电流, 可以作成 P 漏开路或 N 漏开路. TTL 的高电平由源极跟随器输出电流, 不适合 "线或".
3, TTL
CMOS 的驱动或反之, 原则上不建议用上下拉电阻来改变电平, 最好加电平转换电路. 如果两边的电源都是 5 , 可以直接连但影响性能和稳定, 尤其是 CMOS 驱动 TTL . 两边逻辑电平不同时, 一定要用电平转换. 电源电压 3 伏或以下时, 建议不要用直连更不能用电阻拉电平.
4,
芯片外加电阻由应用情况决定, 但是在逻辑电路中用电阻拉电平或改善驱动能力都是不可行的. 需要改善驱动应加驱动电路. 改变电平应加电平转换电路. 包括长线接收都有专门的芯片.

 

 

 

                                              0欧姆电阻
 

1,在电路中没有任何功能,只是在PCB上为了调试方便或兼容设计等原因。
2,
可以做跳线用,如果某段线路不用,直接不贴该电阻即可(不影响外观)
3,
在匹配电路参数不确定的时候,以0欧姆代替,实际调试的时候,确定参数,再以具体数值的元件代替。
4,
想测某部分电路的耗电流的时候,可以去掉0ohm电阻,接上电流表,这样方便测耗电流。
5,
在布线时,如果实在布不过去了,也可以加一个0欧的电阻
6,
在高频信号下,充当电感或电容。(与外部电路特性有关)电感用,主要是解决EMC问题。如地与地,电源和IC Pin
7,
单点接地(指保护接地、工作接地、直流接地在设备上相互分开,各自成为独立系统。)
8,
熔丝作用
*
模拟地和数字地单点接地*
  只要是地,最终都要接到一起,然后入大地。如果不接在一起就是"浮地",存在压差,容易积累电荷,造成静电。地是参考0电 位,所有电压都是参考地得出的,地的标准要一致,故各种地应短接在一起。人们认为大地能够吸收所有电荷,始终维持稳定,是最终的地参考点。虽然有些板子没 有接大地,但发电厂是接大地的,板子上的电源最终还是会返回发电厂入地。如果把模拟地和数字地大面积直接相连,会导致互相干扰。不短接又不妥,理由如上有 四种方法解决此问题:
1
、用磁珠连接;
2
、用电容连接;
3
、用电感连接;
4
、用0欧姆电阻连接。
  磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有显著抑制作用,使用时需要预先估计噪点频率,以便选用适当型号。对于频率不确定或无法预知的情况,磁珠不合。
  电容隔直通交,造成浮地。
  电感体积大,杂散参数多,不稳定。
  0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑制。电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。

*
跨接时用于电流回路*
  当分割电地平面后,造成信号最短回流路径断裂,此时,信号回路不得不绕道,形成很大的环路面积,电场和磁场的影响就变强了,容易干扰/被干扰。在分割区上跨接0欧电阻,可以提供较短的回流路径,减小干扰。
*
配置电路*
  一般,产品上不要出现跳线和拨码开关。有时用户会乱动设置,易引起误会,为了减少维护费用,应用0欧电阻代替跳线等焊在板子上。
空置跳线在高频时相当于天线,用贴片电阻效果好。
*
其他用途*  
布线时跨线
调试/测试用
临时取代其他贴片器件
作为温度补偿器件

更多时候是出于EMC对策的需要。另外,0欧姆电阻比过孔的寄生电感小,而且过孔还会影响地平面(因为要挖孔)。

補:方便软件的分别布线区域范围:主要功能是跳线,运用的目的主要是为了在PCB补线的时候软件可以区分不同的区域。也就是说为了使的每一部分的电源和地有不同的回路,如果没有这个电阻,软件会乱连,导致的结果是比如数字地和模拟地混乱,数字电源和模拟电源的互相干扰等等。所以总结就是为了方便软件的分别布线区域范围。

 

                                           TTL&CMOS

 

 

TTL集成电路使用TTL管,也就是PN结。功耗较大,驱动能力强,一般工作电压+5V
CMOS集成电路使用MOS管,功耗小,工作电压范围很大,一般速度也低,但是技术在改进,这已经不是问题。
就TTL与CMOS电平来讲,前者属于双极型数字集成电路,其输入端与输出端均为三极管,因此它的阀值电压是<0.2V为输出低电平;>3.4V为输出高电平。
而CMOS电平就不同了,他的阀值电压比TTL电平大很多。而串口的传输电压都是以COMS电压传输的。
1,TTL电平:
输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平
是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是
0.4V。
2,CMOS电平:
1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。而且具有很宽的噪声容限。

3,电平转换电路:
因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需
要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。哈哈

4,OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能
将开关电平作为高低电平用。否则它一般只作为开关大电压和大电流负载,所以又叫做驱
动门电路。

5,TTL和COMS电路比较:
1)TTL电路是电流控制器件,而coms电路是电压控制器件。
2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。
COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。
COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常
现象。
3)COMS电路的锁定效应:
COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大
。这种效应就是锁定效应。当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易
烧毁芯片。
防御措施:
1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。
2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。
3)在VDD和外电源之间加线流电阻,即使有大的电流也不让它进去。
4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS电路得电
源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS

你可能感兴趣的:(上拉电阻/0欧姆电阻/TTL&CMOS)