/* Intel、微软等公司曾经出过一道类似的面试题: 问程序的输入结果是什么? */ #include <iostream> using namespace std; #pragma pack(8) struct example1{ short a; long b; }; struct example2{ char c; example1 struct1; short e; }; #pragma pack() void main(){ example2 struct2; cout<<sizeof(example1)<<endl; //8 cout<<sizeof(example2)<<endl; //16 cout<<(unsigned int)(&struct2.struct1)-(unsigned int)(&struct2)<<endl; //4 getchar(); }
程序输出结果是:8 16 4
程序分析:
1、example1结构体来说:short和long,其中short占两个字节,long占四个字节,由于对齐原则,故sizeof(example1)占8个字节。
2、example2结构体来说:char、example1和short,其中char占一个字节,example1占8个字节,short占两个个字节.
如果把example2结构体改为(元素2、3颠倒了):
struct example2
{
char c;
short e;
example1 struct1;
};
程序输出结果则变为:8 12 4
有点茫然,这到底是怎么一回事?上述两个对比,好像是用到了内存分配时的补齐原则(char和short总共占四个字节)。但在对齐的时候是结构体成员变量example1的组成元素来进行对齐的,而是按照里面最大的进行对齐的(即4)。
举例验证:
1、示例一:结构体成员变量占字节数大于所有其他成员变量(取结构体内部元素所占字节的最大数进行对齐)
struct example1
{
short a; //2字节 (对齐为8)
double b; //8字节
};
struct example2
{
long c; //4字节 (对齐为8)
example1 struct1; //16字节(按其内部8来对齐)
short e; //2字节 (对齐为8)
};
输出结果:16 32 8
1、示例二:结构体成员变量占字节数小于其他某成员变量
struct example1
{
short a;
char b;
};
struct example2
{
double c; //8字节(按此进行对齐)
example1 struct1; //4字节
short e; //2字节(补齐原则,这两个总共占8字节)
};
输出结果:4 16 8
修改example2为:
struct example2
{
short e; //2字节 (对齐8字节)
double c; //8字节(按此进行对齐)
example1 struct1; //4字节 (对齐8字节)
};
输出结果: 4 24 16
今天主要是对存在结构体成员变量时,内存分配的对齐与补齐原则进行了一个大致的试验总结。
刚准备结束发现上面还有一个东东没注意到,#pragma pack(8)这是什么玩意?改一下,看看有没有什么变化。8改为4,运行一下刚才的最后一个例子,输出结果竟然变成了:4 16 12。看来这个东东是和内存分配有关系,google一下吧。
伪指令#pragma pack (n),C编译器将按照n个字节对齐。
伪指令#pragma pack (),取消自定义字节对齐方式。
现在应该明白最后一个小测试结果怎么变了吧。当明确指定了对齐字节数,则会选择默认对齐和指定值中小的进行对齐。上面结构体体example2默认对齐是8,应选择指定对齐4,故short补为4.
附:int(4字节)、short(2字节)、long(4字节)long long(8字节)
float(4字节)、double(8字节)
char(1字节)
什么是对齐,以及为什么要对齐:
现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。
对 齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。其他平台可能没有这种情况,但 是最常见的是如果不按照适合其平台要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32 位系统)如果存放在偶地址开始的地方,那么一个读周期就可以读出,而如果存放在奇地址开始的地方,就可能会需要2个读周期,并对两次读出的结果的高低字节 进行拼凑才能得到该int数据。显然在读取效
率上下降很多。这也是空间和时间的博弈。
对齐的实现
通常,我们写程序的时候,不需要考虑对齐问题。编译器会替我们选择适合目标平台的对齐策略。当然,我们也可以通知给编译器传递预编译指令而改变对指定数据的对齐方法。
但是,正因为我们一般不需要关心这个问题,所以因为编辑器对数据存放做了对齐,而我们不了解的话,常常会对一些问题感到迷惑。最常见的就是struct数据结构的sizeof结果,出乎意料。为此,我们需要对对齐算法所了解。
对齐的算法:
由于各个平台和编译器的不同,现以本人使用的gcc version 3.2.2编译器(32位x86平台)为例子,来讨论编译器对struct数据结构中的各成员如何进行对齐的。
一、内存对齐的原因
大部分的参考资料都是如是说的:
1、平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2、性能原因:数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。
二、对齐规则
每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。程序员可以通过预编译命令#pragma pack(n),n=1,2,4,8,16来改变这一系数,其中的n就是你要指定的“对齐系数”。
规则:
1、数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行。
2、结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行。
3、结合1、2颗推断:当#pragma pack的n值等于或超过所有数据成员长度的时候,这个n值的大小将不产生任何效果。
设结构体如下定义:
struct A
{
int a;
char b;
short c;
};
结构体A中包含了4字节长度的int一个,1字节长度的char一个和2字节长度的short型数据一个。所以A用到的空间应该是7字节。但是因为编译器要对数据成员在空间上进行对齐。
所以使用sizeof(strcut A)值为8。
现在把该结构体调整成员变量的顺序。
struct B
{
char b;
int a;
short c;
};
这时候同样是总共7个字节的变量,但是sizeof(struct B)的值却是12。
下面我们使用预编译指令#progma pack (value)来告诉编译器,使用我们指定的对齐值来取代缺省的。
#progma pack (2) /*指定按2字节对齐*/
struct C
{
char b;
int a;
short c;
};
#progma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct C)值是8。
修改对齐值为1:
#progma pack (1) /*指定按1字节对齐*/
struct D
{
char b;
int a;
short c;
};
#progma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct D)值为7。
对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,单位字节。
这里面有四个概念值:
1.数据类型自身的对齐值:就是上面交代的基本数据类型的自身对齐值。
2.指定对齐值:#progma pack (value)时的指定对齐值value。
3.结构体或者类的自身对齐值:其成员中自身对齐值最大的那个值。
4.数据成员、结构体和类的有效对齐值:自身对齐值和指定对齐值中小的那个值。
有 了这些值,我们就可以很方便的来讨论具体数据结构的成员和其自身的对齐方式。有效对齐值N是最终用来决定数据存放地址方式的值,最重要。有效对齐N,就是 表示“对齐在N上”,也就是说该数据的"存放起始地址%N=0".而数据结构中的数据变量都是按定义的先后顺序来排放的。第一个数据变量的起始地址就是数 据结构的起始地址。结构体的成员变量要对齐排放,结构体本身也要根据自身的有效对齐值圆整(就是结构体成员变量占用总长度需要是对结构体有效对齐值的整数 倍,结合下面例子理解)。
各成员变量存放的起始地址相对于结构的起始地址的偏移量必须为该变量的类型所占用的字节数的倍数。各成员变量在存放的时候根据在结构中出现的顺序依次申请空间,同时按照上面的对齐方式调整位置,空缺的字节自动填充。同时为了确保结构的大小为结构的字节边界数(即该结构中占用最大空间的类型所占用的字节数)的倍数,所以在为最后一个成员变量申请空间后,还会根据需要自动填充空缺的字节。
位域情况:
C99规定int、unsigned int和bool可以作为位域类型。但编译器几乎都对此作了扩展,允许其它类型类型的存在。
如果结构体中含有位域(bit-field),总结规则如下
1) 如果相邻位域字段的类型相同,且其位宽之和小于类型的sizeof大小,则后面的字段将紧邻前一个字段存储,直到不能容纳为止;
2) 如果相邻位域字段的类型相同,但其位宽之和大于类型的sizeof大小,则后面的字段将从新的存储单元开始,其偏移量为其类型大小的整数倍;
3) 如果相邻的位域字段的类型不同,则各编译器的具体实现有差异,VC6采取不压缩方式(不同位域字段存放在不同的位域类型字节中),Dev-C++和GCC都采取压缩方式;
4)如果位域字段之间穿插着非位域字段,则不进行压缩;
5) 结构体的总大小为结构体最宽基本类型成员大小的整数倍,且应尽量节省内存。
备注:当两字段类型不一样的时候,对于不压缩方式,例如:
struct N {
char c:2;
int i:4;
};
依然要满足不含位域结构体内存对齐准则第3条,i成员相对于结构体首地址的偏移应该是4的整数倍,所以c成员后要填充3个字节,然后再开辟4个字节的空间作为int型,其中4位用来存放i,所以上面结构体在VC中所占空间为8个字节;
而对于采用压缩方式的编译器来说,遵循不含位域结构体内存对齐准则第3条,不同的是,如果填充的3个字节能容纳后面成员的位,则压缩到填充字节中,不能容纳,则要单独开辟空间,所以上面结构体N在GCC或者Dev- C++中所占空间应该是4个字节。
例子4:
typedef struct {
char c:2;
double i;
int c2:4;
}N3;
按照含位域规则4,在GCC下占据的空间为16字节,在VC下占据的空间是24个字节。
结论:
--------
定义结构体的时候,成员最好能从大到小来定义,那样能相对的省空间。例如如下定义:
struct A {
double d;
int i;
char c;
};
那么,无论是windows下的vc系列编译器,还是linux下的gcc,都是16字节。
例子5:
typedef union student{
char name[10];
long sno;
char sex;
float score [4];
} STU;
STU aa[5];
cout<<sizeof(aa)<<endl;
union是可变的以其成员中最大的成员作为该union的大小16*5=5=80
例子6:
typedef struct student{
char name[10];
long sno;
char sex;
float score [4];
} STU;
STU aa[5];
cout<<sizeof(aa)<<endl;
STU占空间为:10字节(char)+空2字节+4字节(long)+1字节(char)+空3字节+16字节(float)=36字节,36*5=180字节
例子7(VC8.0):
typedef struct bitstruct {
int b1:5;
int b2:2;
int b3:3;
}bitstruct;
int _tmain(int argc, _TCHAR* argv[]) {
bitstruct b;
memcpy(&b,"EM",sizeof(b));
cout<<sizeof(b)<<endl;
cout<<b.b1<<endl<<b.b2<<endl<<b.b3;
return 0;
}
对于bitstruct是含有位域的结构体,sizeof(int)为4字节,按照规则1、2,首先b1占起始的5个字节, 根据含位域规则1, b2紧跟存放,b3也是紧跟存放的。
根据规则5,得到sizeof(bitstruct) = 4。
现在主流的CPU,intel系列的是采用的little endian的格式存放数据,motorola系列的CPU采用的是big endian.
以主流的little endian分析:
在进行内存分配的时候,首先分配bitstruct的第一个成员类型int(4字节),这四个字节的存放按照低字节存储在低地址中的原则。
int共4个字节:
第4个字节 - 第3个字节 - 第2个字节 - 第1个字节,
在内存中的存放方式如下所示。
而后为b1分配5位,这里优先分配的应该是低5位,也就是第一个字节的低5位。
继而分配b2的2个字节,也就是第1个字节中紧接着的2位。
最后分配b3的3位,按照规则1、2,b3还是紧接着存放的,b3的最低位是第一个字节的最高位,高两位为第2个字节的低两位。
补充一下,对于数组,比如:
char a[3];这种,它的对齐方式和分别写3个char是一样的.也就是说它还是按1个字节对齐.
如果写: typedef char Array3[3];
Array3这种类型的对齐方式还是按1个字节对齐,而不是按它的长度.
不论类型是什么,对齐的边界一定是1,2,4,8,16,32,64....中的一个.
这样就不能理解上面的几个例子的值了。
例子分析:
分析例子B;
struct B
{
char b;
int a;
short c;
};
假 设B从地址空间0x0000开始排放。该例子中没有定义指定对齐值,在笔者环境下,该值默认为4。第一个成员变量b的自身对齐值是1,比指定或者默认指定 对齐值4小,所以其有效对齐值为1,所以其存放地址0x0000符合0x0000%1=0.第二个成员变量a,其自身对齐值为4,所以有效对齐值也为4, 所以只能存放在起始地址为0x0004到0x0007这四个连续的字节空间中,复核0x0004%4=0,且紧靠第一个变量。第三个变量c,自身对齐值为 2,所以有效对齐值也是2,可以存放在0x0008到0x0009这两个字节空间中,符合0x0008%2=0。所以从0x0000到0x0009存放的 都是B内容。再看数据结构B的自身对齐值为其变量中最大对齐值(这里是b)所以就是4,所以结构体的有效对齐值也是4。根据结构体圆整的要求, 0x0009到0x0000=10字节,(10+2)%4=0。所以0x0000A到0x000B也为结构体B所占用。故B从0x0000到0x000B 共有12个字节,sizeof(struct B)=12;
同理,分析上面例子C:
#pragma pack (2) /*指定按2字节对齐*/
struct C
{
char b;
int a;
short c;
};
#pragma pack () /*取消指定对齐,恢复缺省对齐*/
第 一个变量b的自身对齐值为1,指定对齐值为2,所以,其有效对齐值为1,假设C从0x0000开始,那么b存放在0x0000,符合0x0000%1= 0;第二个变量,自身对齐值为4,指定对齐值为2,所以有效对齐值为2,所以顺序存放在0x0002、0x0003、0x0004、0x0005四个连续 字节中,符合0x0002%2=0。第三个变量c的自身对齐值为2,所以有效对齐值为2,顺序存放
在0x0006、0x0007中,符合 0x0006%2=0。所以从0x0000到0x00007共八字节存放的是C的变量。又C的自身对齐值为4,所以C的有效对齐值为2。又8%2=0,C 只占用0x0000到0x0007的八个字节。所以sizeof(struct C)=8.
3. C 和C++间struct 的深层区别
在C++语言中struct 具有了“类” 的功能,其与关键字class 的区别在于struct 中成员变量
和函数的默认访问权限为public,而class 的为private。
例如,定义struct 类和class 类:
struct structA
{
char a;
…
}
class classB
{
char a;
…
}
则:
structA a;
a.a = 'a'; //访问public 成员,合法
classB b;
b.a = 'a'; //访问private 成员,不合法
许多文献写到这里就认为已经给出了C++中struct 和class 的全部区别,实则不然,另外一点
需要注意的是:
C++中的struct 保持了对C 中struct 的全面兼容(这符合C++的初衷——“a better c”),
因而,下面的操作是合法的:
//定义struct
struct structA
{
char a;
char b;
int c;
};structA a = {'a' , 'a' ,1}; // 定义时直接赋初值
即struct 可以在定义的时候直接以{ }对其成员变量赋初值,而class 则不能,在经典书目
《thinking C++ 2nd edition》中作者对此点进行了强调。
4. struct 编程注意事项
看看下面的程序:
1. #include <iostream.h>
2. struct structA
3. {
4. int iMember;
5. char *cMember;
6. };
7. int main(int argc, char* argv[])
8.{
9. structA instant1,instant2;
10. char c = 'a';
11. instant1.iMember = 1;
12. instant1.cMember = &c;
13. instant2 = instant1;
14. cout << *(instant1.cMember) << endl;
15. *(instant2.cMember) = 'b';
16. cout << *(instant1.cMember) << endl;
17. return 0;
}
14 行的输出结果是:a
16 行的输出结果是:b
Why?我们在15 行对instant2 的修改改变了instant1 中成员的值!
原因在于13 行的instant2 = instant1 赋值语句采用的是变量逐个拷贝,这使得instant1 和
instant2 中的cMember 指向了同一片内存,因而对instant2 的修改也是对instant1 的修改。
在C 语言中,当结构体中存在指针型成员时,一定要注意在采用赋值语句时是否将2 个实例中的
指针型成员指向了同一片内存。
在C++语言中,当结构体中存在指针型成员时,我们需要重写struct 的拷贝构造函数并进行“=”
操作符重载。
参考:http://hhfighting.blog.163.com/blog/static/55700323201071113728411/
http://tieba.baidu.com/f?kz=185417219
http://hi.baidu.com/deep_pro/blog/item/421db081aeb604debd3e1e01.html
http://bigwhite.blogbus.com/logs/1347304.html
http://www.cnblogs.com/alex-tech/archive/2011/03/24/1993856.html 有原则的疯人
http://www.sf.org.cn/Article/base/200509/260.html