Matlab曲线拟合 最小二乘法 polyfit

曲线拟合

已知离散点上的数据集 ,即已知在点集 上的函数值 ,构造一个解析函数(其图形为一曲线)使在原离散点 上尽可能接近给定的 值,这一过程称为曲线拟合。最常用的曲线拟合方法是最小二乘法,该方法是寻找函数使得 最小。

MATLAB函数:p=polyfit(x,y,n)

[p,s]= polyfit(x,y,n)

说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x必须是单调的。矩阵s用于生成预测值的误差估计。(见下一函数polyval)

多项式曲线求值函数:polyval( )

调用格式: y=polyval(p,x)

[y,DELTA]=polyval(p,x,s)

说明:y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。

[y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。

Matlab曲线拟合 最小二乘法 polyfit_第1张图片

Matlab曲线拟合 最小二乘法 polyfit_第2张图片

练习:如下给定数据的拟合曲线,x=[0.5,1.0,1.5,2.0,2.5,3.0],

y=[1.75,2.45,3.81,4.80,7.00,8.60]。

解:MATLAB程序如下:

x=[0.5,1.0,1.5,2.0,2.5,3.0];

y=[1.75,2.45,3.81,4.80,7.00,8.60];

p=polyfit(x,y,2)

x1=0.5:0.05:3.0;

y1=polyval(p,x1);

plot(x,y,'*r',x1,y1,'-b')

计算结果为:

p =0.5614 0.8287 1.1560

即所得多项式为y=0.5614x^2+0.08287x+1.15560

你可能感兴趣的:(matlab,图形,plot)