Sqoop安装及操作以及oozie&sqoop

一、集群环境:

 

Hostname

IP

Hadoop版本

Hadoop

功能

系统

node1

 

192.168.1.151

0.20.0

namenode

hive+sqoop

rhel5.4X86

node2

 

192.168.1.152

0.20.0

datanode

mysql

rhel5.4X86

node3

 

192.168.1.153

0.20.0

datanode

 

rhel5.4X86

 二、安装sqoop

1、下载sqoop压缩包,并解压

压缩包分别是:sqoop-1.2.0-CDH3B4.tar.gz,hadoop-0.20.2-CDH3B4.tar.gz, Mysql JDBC驱动包mysql-connector-java-5.1.10-bin.jar

[root@node1 ~]# ll
drwxr-xr-x 15 root  root      4096 Feb 22  2011 hadoop-0.20.2-CDH3B4
-rw-r--r--  1 root  root    724225 Sep 15 06:46 mysql-connector-java-5.1.10-bin.jar
drwxr-xr-x 11 root  root      4096 Feb 22  2011 sqoop-1.2.0-CDH3B4

2、将sqoop-1.2.0-CDH3B4拷贝到/home/hadoop目录下,并将Mysql JDBC驱动包和hadoop-0.20.2-CDH3B4下的hadoop-core-0.20.2-CDH3B4.jar至sqoop-1.2.0-CDH3B4/lib下,最后修改一下属主。

复制代码
[root@node1 ~]# cp mysql-connector-java-5.1.10-bin.jar sqoop-1.2.0-CDH3B4/lib
[root@node1 ~]# cp hadoop-0.20.2-CDH3B4/hadoop-core-0.20.2-CDH3B4.jar sqoop-1.2.0-CDH3B4/lib
[root@node1 ~]# chown -R hadoop:hadoop sqoop-1.2.0-CDH3B4
[root@node1 ~]# mv sqoop-1.2.0-CDH3B4 /home/hadoop
[root@node1 ~]# ll /home/hadoop
total 35748
-rw-rw-r--  1 hadoop hadoop      343 Sep 15 05:13 derby.log
drwxr-xr-x 13 hadoop hadoop     4096 Sep 14 16:16 hadoop-0.20.2
drwxr-xr-x  9 hadoop hadoop     4096 Sep 14 20:21 hive-0.10.0
-rw-r--r--  1 hadoop hadoop 36524032 Sep 14 20:20 hive-0.10.0.tar.gz
drwxr-xr-x  8 hadoop hadoop     4096 Sep 25  2012 jdk1.7
drwxr-xr-x 12 hadoop hadoop     4096 Sep 15 00:25 mahout-distribution-0.7
drwxrwxr-x  5 hadoop hadoop     4096 Sep 15 05:13 metastore_db
-rw-rw-r--  1 hadoop hadoop      406 Sep 14 16:02 scp.sh
drwxr-xr-x 11 hadoop hadoop     4096 Feb 22  2011 sqoop-1.2.0-CDH3B4
drwxrwxr-x  3 hadoop hadoop     4096 Sep 14 16:17 temp
drwxrwxr-x  3 hadoop hadoop     4096 Sep 14 15:59 user
复制代码

3、配置configure-sqoop,注释掉对于HBase和ZooKeeper的检查

复制代码
[root@node1 bin]# pwd
/home/hadoop/sqoop-1.2.0-CDH3B4/bin
[root@node1 bin]# vi configure-sqoop 

#!/bin/bash
#
# Licensed to Cloudera, Inc. under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
.
.
.
# Check: If we can't find our dependencies, give up here.
if [ ! -d "${HADOOP_HOME}" ]; then
  echo "Error: $HADOOP_HOME does not exist!"
  echo 'Please set $HADOOP_HOME to the root of your Hadoop installation.'
  exit 1
fi
#if [ ! -d "${HBASE_HOME}" ]; then
#  echo "Error: $HBASE_HOME does not exist!"
#  echo 'Please set $HBASE_HOME to the root of your HBase installation.'
#  exit 1
#fi
#if [ ! -d "${ZOOKEEPER_HOME}" ]; then
#  echo "Error: $ZOOKEEPER_HOME does not exist!"
#  echo 'Please set $ZOOKEEPER_HOME to the root of your ZooKeeper installation.'
#  exit 1
#fi
复制代码

4、修改/etc/profile和.bash_profile文件,添加Hadoop_Home,调整PATH

复制代码
[hadoop@node1 ~]$ vi .bash_profile 

# .bash_profile

# Get the aliases and functions
if [ -f ~/.bashrc ]; then
        . ~/.bashrc
fi

# User specific environment and startup programs

HADOOP_HOME=/home/hadoop/hadoop-0.20.2
PATH=$HADOOP_HOME/bin:$PATH:$HOME/bin
export HIVE_HOME=/home/hadoop/hive-0.10.0
export MAHOUT_HOME=/home/hadoop/mahout-distribution-0.7
export PATH HADOOP_HOME
复制代码

三、测试Sqoop

1、查看mysql中的数据库:

复制代码
[hadoop@node1 bin]$ ./sqoop list-databases --connect jdbc:mysql://192.168.1.152:3306/ --username sqoop --password sqoop
13/09/15 07:17:16 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
13/09/15 07:17:17 INFO manager.MySQLManager: Executing SQL statement: SHOW DATABASES
information_schema
mysql
performance_schema
sqoop
test
复制代码

2、将mysql的表导入到hive中:

复制代码
[hadoop@node1 bin]$ ./sqoop import --connect jdbc:mysql://192.168.1.152:3306/sqoop --username sqoop --password sqoop --table test --hive-import -m 1
13/09/15 08:15:01 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
13/09/15 08:15:01 INFO tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can override
13/09/15 08:15:01 INFO tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc.
13/09/15 08:15:01 INFO tool.CodeGenTool: Beginning code generation
13/09/15 08:15:01 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 1
13/09/15 08:15:02 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 1
13/09/15 08:15:02 INFO orm.CompilationManager: HADOOP_HOME is /home/hadoop/hadoop-0.20.2/bin/..
13/09/15 08:15:02 INFO orm.CompilationManager: Found hadoop core jar at: /home/hadoop/hadoop-0.20.2/bin/../hadoop-0.20.2-core.jar
13/09/15 08:15:03 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/a71936fd2bb45ea6757df22751a320e3/test.jar
13/09/15 08:15:03 WARN manager.MySQLManager: It looks like you are importing from mysql.
13/09/15 08:15:03 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
13/09/15 08:15:03 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
13/09/15 08:15:03 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
13/09/15 08:15:03 INFO mapreduce.ImportJobBase: Beginning import of test
13/09/15 08:15:04 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 1
13/09/15 08:15:05 INFO mapred.JobClient: Running job: job_201309150505_0009
13/09/15 08:15:06 INFO mapred.JobClient:  map 0% reduce 0%
13/09/15 08:15:34 INFO mapred.JobClient:  map 100% reduce 0%
13/09/15 08:15:36 INFO mapred.JobClient: Job complete: job_201309150505_0009
13/09/15 08:15:36 INFO mapred.JobClient: Counters: 5
13/09/15 08:15:36 INFO mapred.JobClient:   Job Counters 
13/09/15 08:15:36 INFO mapred.JobClient:     Launched map tasks=1
13/09/15 08:15:36 INFO mapred.JobClient:   FileSystemCounters
13/09/15 08:15:36 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=583323
13/09/15 08:15:36 INFO mapred.JobClient:   Map-Reduce Framework
13/09/15 08:15:36 INFO mapred.JobClient:     Map input records=65536
13/09/15 08:15:36 INFO mapred.JobClient:     Spilled Records=0
13/09/15 08:15:36 INFO mapred.JobClient:     Map output records=65536
13/09/15 08:15:36 INFO mapreduce.ImportJobBase: Transferred 569.6514 KB in 32.0312 seconds (17.7842 KB/sec)
13/09/15 08:15:36 INFO mapreduce.ImportJobBase: Retrieved 65536 records.
13/09/15 08:15:36 INFO hive.HiveImport: Removing temporary files from import process: test/_logs
13/09/15 08:15:36 INFO hive.HiveImport: Loading uploaded data into Hive
13/09/15 08:15:36 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 1
13/09/15 08:15:36 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 1
13/09/15 08:15:41 INFO hive.HiveImport: Logging initialized using configuration in jar:file:/home/hadoop/hive-0.10.0/lib/hive-common-0.10.0.jar!/hive-log4j.properties
13/09/15 08:15:41 INFO hive.HiveImport: Hive history file=/tmp/hadoop/hive_job_log_hadoop_201309150815_1877092059.txt
13/09/15 08:16:10 INFO hive.HiveImport: OK
13/09/15 08:16:10 INFO hive.HiveImport: Time taken: 28.791 seconds
13/09/15 08:16:11 INFO hive.HiveImport: Loading data to table default.test
13/09/15 08:16:12 INFO hive.HiveImport: Table default.test stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 583323, raw_data_size: 0]
13/09/15 08:16:12 INFO hive.HiveImport: OK
13/09/15 08:16:12 INFO hive.HiveImport: Time taken: 1.704 seconds
13/09/15 08:16:12 INFO hive.HiveImport: Hive import complete.
	
 
    
 
    
 
    
 
    
 
    
    <sqoop xmlns="uri:oozie:sqoop-action:0.2">
      <job-tracker>${jobTracker}</job-tracker>
   <name-node>${nameNode}</name-node>
      <prepare>
        <delete path="${wf_job_base_path}/sqoop/dimAd/old"/>
      </prepare>
      <configuration>
        <property>
          <name>mapred.job.queue.name</name>
          <value>${queueName}</value>
        </property>
      </configuration>
      <arg>import</arg>
      <arg>-D</arg>
      <arg>mapred.output.compress=false</arg>
      <arg>--connect</arg>
      <arg>jdbc:mysql://${db_hostname}/${db_name}</arg>
      <arg>--table</arg>
      <arg>dimAd</arg>
      <arg>--target-dir</arg>
      <arg>${wf_job_base_path}/sqoop/dimAd/old</arg>
      <arg>--num-mappers</arg>
      <arg>${sqoop_export_mappers_num}</arg>
      <arg>--username</arg>
      <arg>${db_user}</arg>
      <arg>--password</arg>
      <arg>${db_password}</arg>
      <arg>--fields-terminated-by</arg>
      <arg>\001</arg>
    </sqoop>
    <ok to="end"/>
    <error to="fail"/>
  </action>				

你可能感兴趣的:(Sqoop安装及操作以及oozie&sqoop)