已知一个展开的盒子,和上面的两个点,求这个盒子拼好后,这两个点的距离。
二维的转三维,然后计算距离即可。细节很繁呐。。
我的get_id函数是分块儿的,然后in_it 是判断在哪个块儿,然后change是坐标转换。
#include <set> #include <map> #include <queue> #include <stack> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <iostream> #include <limits.h> #include <string.h> #include <string> #include <algorithm> #define MID(x,y) ( ( x + y ) >> 1 ) #define L(x) ( x << 1 ) #define R(x) ( x << 1 | 1 ) #define FOR(i,s,t) for(int i=s; i<t; i++) #define BUG puts("here!!!") #define STOP system("pause") using namespace std; const double eps = 1e-6; struct point{ double x, y; void get() { scanf("%lf%lf", &x, &y); } void P(double xx, double yy) { x = xx; y = yy; } }; struct point3{ double x, y, z; point3(){}; point3( double x, double y, double z):x(x), y(y), z(z){} void P(double xx, double yy, double zz) { x = xx; y = yy; z == zz; } }; struct rectangle{ point a, b;}; rectangle re[10]; point3 u, v; double a, b, c; point p1, p2; bool dy(double x,double y) { return x > y + eps;} // x > y bool xy(double x,double y) { return x < y - eps;} // x < y bool dyd(double x,double y) { return x > y - eps;} // x >= y bool xyd(double x,double y) { return x < y + eps;} // x <= y bool dd(double x,double y) { return fabs( x - y ) < eps;} // x == y double disp2p(point3 a, point3 b) { return sqrt( (a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y) + (a.z - b.z)*(a.z - b.z) ); } void get_id() { re[1].a.P(0, c+b); re[1].b.P(c, 2*b+c); re[2].a.P(c, 2*b+c); re[2].b.P(a+c, 2*(b+c)); re[3].a.P(c, b+c); re[3].b.P(a+c, 2*b+c); re[4].a.P(a+c, b+c); re[4].b.P(2*c+a, 2*b+c); re[5].a.P(c, b); re[5].b.P(a+c, b+c); re[6].a.P(c, 0); re[6].b.P(c+a, b); } int in_it(point p) { FOR(i, 1, 7) if( dyd(p.x, re[i].a.x) && dyd(p.y, re[i].a.y) && xyd(p.x, re[i].b.x) && xyd(p.y, re[i].b.y) ) return i; } point3 change(point p, int id) { switch(id) { case 1: return point3(0, 2 * b + c - p.y, c - p.x); case 2: return point3(p.x - c, 0, p.y - 2 * b - c); case 3: return point3(p.x - c, 2 * b + c - p.y, 0); case 4: return point3(a, 2 * b + c - p.y, p.x - a - c); case 5: return point3(p.x - c, b, b + c - p.y); case 6: return point3(p.x - c, p.y, c); } } int main() { scanf("%lf%lf%lf", &a, &b, &c); p1.get(); p2.get(); get_id(); int id_1 = in_it(p1); int id_2 = in_it(p2); point3 pp1 = change(p1, id_1); point3 pp2 = change(p2, id_2); double ans = disp2p(pp1, pp2); printf("%.16lf\n", ans); return 0; }