LPCTSTR是什么 和CString区别

其它连接可参见

 

CString LPCTSTR区别联系
CString是一个动态TCHAR数组,BSTR是一种专有格式的字符串(需要用系统提供的函数来操纵,LPCTSTR只是一个常量的TCHAR指针。

CString 是一个完全独立的类,动态的TCHAR数组,封装了 + 等操作符和字符串操作方法。
typedef OLECHAR FAR* BSTR;
typedef const char * LPCTSTR;

vc++中各种字符串的表示法
首先char* 是指向ANSI字符数组的指针,其中每个字符占据8位(有效数据是除掉最高位的其他7位),这里保持了与传统的C,C++的兼容。

LP的含义是长指针(long pointer)。LPSTR是一个指向以‘\0’结尾的ANSI字符数组的指针,与char*可以互换使用,在win32中较多地使用LPSTR。
而LPCSTR中增加的‘C’的含义是“CONSTANT”(常量),表明这种数据类型的实例不能被使用它的API函数改变,除此之外,它与LPSTR是等同的。
1.LP表示长指针,在win16下有长指针(LP)和短指针(P)的区别,而在win32下是没有区别的,都是32位.所以这里的LP和P是等价的.
2.C表示const
3.T是什么东西呢,我们知道TCHAR在采用Unicode方式编译时是wchar_t,在普通时编译成char.

为了满足程序代码国际化的需要,业界推出了Unicode标准,它提供了一种简单和一致的表达字符串的方法,所有字符中的字节都是16位的值,其数 量也可以满足差不多世界上所有书面语言字符的编码需求,开发程序时使用Unicode(类型为wchar_t)是一种被鼓励的做法。

LPWSTR与LPCWSTR由此产生,它们的含义类似于LPSTR与LPCSTR,只是字符数据是16位的wchar_t而不是char。

然后为了实现两种编码的通用,提出了TCHAR的定义:
如果定义_UNICODE,声明如下:
typedef wchar_t TCHAR;
如果没有定义_UNICODE,则声明如下:
typedef char TCHAR;

LPTSTR和LPCTSTR中的含义就是每个字符是这样的TCHAR。

CString类中的字符就是被声明为TCHAR类型的,它提供了一个封装好的类供用户方便地使用。

LPCTSTR:
     #ifdef _UNICODE
        typedef const wchar_t * LPCTSTR;
     #else
        typedef const char * LPCTSTR;
     #endif

VC常用数据类型使用转换详解

先定义一些常见类型变量借以说明
int i = 100;
long l = 2001;
float f=300.2;
double d=12345.119;
char username[]="女侠程佩君";
char temp[200];
char *buf;
CString str;
_variant_t v1;
_bstr_t v2;

一、其它数据类型转换为字符串

短整型(int)
       itoa(i,temp,10);     //将i转换为字符串放入temp中,最后一个数字表示十进制
       itoa(i,temp,2);      //按二进制方式转换
长整型(long)
       ltoa(l,temp,10);


二、从其它包含字符串的变量中获取指向该字符串的指针

CString变量
str = "2008北京奥运";
buf = (LPSTR)(LPCTSTR)str;
BSTR类型的_variant_t变量
v1 = (_bstr_t)"程序员";
buf = _com_util::ConvertBSTRToString((_bstr_t)v1);

三、字符串转换为其它数据类型
strcpy(temp,"123");

短整型(int)
      i = atoi(temp);
长整型(long)
      l = atol(temp);
浮点(double)
      d = atof(temp);

四、其它数据类型转换到CString

使用CString的成员函数Format来转换,例如:

整数(int)
      str.Format("%d",i);
浮点数(float)
      str.Format("%f",i);
字符串指针(char *)等已经被CString构造函数支持的数据类型可以直接赋值
      str = username;

五、BSTR、_bstr_t与CComBSTR

CComBSTR、_bstr_t是对BSTR的封装,BSTR是指向字符串的32位指针。
char *转换到BSTR可以这样: BSTR b=_com_util::ConvertStringToBSTR("数据");     //使用前需要加上头文件comutil.h
反之可以使用char *p=_com_util::ConvertBSTRToString(b);


六、VARIANT 、_variant_t 与 COleVariant

VARIANT的结构可以参考头文件VC98\Include\OAIDL.H中关于结构体tagVARIANT的定义。
对于VARIANT变量的赋值:首先给vt成员赋值,指明数据类型,再对联合结构中相同数据类型的变量赋值,举个例子:
VARIANT va;
int a=2001;
va.vt=VT_I4;    //指明整型数据
va.lVal=a;      //赋值

对于不马上赋值的VARIANT,最好先用Void VariantInit(VARIANTARG FAR* pvarg);进行初始化,其本质是将vt设置为VT_EMPTY,下表我们列举vt与常用数据的对应关系:

unsigned char bVal; VT_UI1
short iVal; VT_I2
long lVal; VT_I4
float fltVal; VT_R4
double dblVal; VT_R8
VARIANT_BOOL boolVal; VT_BOOL
SCODE scode; VT_ERROR
CY cyVal; VT_CY
DATE date; VT_DATE
BSTR bstrVal; VT_BSTR
IUnknown FAR* punkVal; VT_UNKNOWN
IDispatch FAR* pdispVal; VT_DISPATCH
SAFEARRAY FAR* parray; VT_ARRAY|*
unsigned char FAR* pbVal; VT_BYREF|VT_UI1
short FAR* piVal; VT_BYREF|VT_I2
long FAR* plVal; VT_BYREF|VT_I4
float FAR* pfltVal; VT_BYREF|VT_R4
double FAR* pdblVal; VT_BYREF|VT_R8
VARIANT_BOOL FAR* pboolVal; VT_BYREF|VT_BOOL
SCODE FAR* pscode; VT_BYREF|VT_ERROR
CY FAR* pcyVal; VT_BYREF|VT_CY
DATE FAR* pdate; VT_BYREF|VT_DATE
BSTR FAR* pbstrVal; VT_BYREF|VT_BSTR
IUnknown FAR* FAR* ppunkVal; VT_BYREF|VT_UNKNOWN
IDispatch FAR* FAR* ppdispVal; VT_BYREF|VT_DISPATCH
SAFEARRAY FAR* FAR* pparray; VT_ARRAY|*
VARIANT FAR* pvarVal; VT_BYREF|VT_VARIANT
void FAR* byref; VT_BYREF

_variant_t是VARIANT的封装类,其赋值可以使用强制类型转换,其构造函数会自动处理这些数据类型。
例如:
long l=222;
ing i=100;
_variant_t lVal(l);
lVal = (long)i;

COleVariant的使用与_variant_t的方法基本一样,请参考如下例子:
COleVariant v3 = "字符串", v4 = (long)1999;
CString str =(BSTR)v3.pbstrVal;
long i = v4.lVal;

七、其它

对消息的处理中我们经常需要将WPARAM或LPARAM等32位数据(DWORD)分解成两个16位数据(WORD),例如:
LPARAM lParam;
WORD loValue = LOWORD(lParam);     //取低16位
WORD hiValue = HIWORD(lParam);     //取高16位
对于16位的数据(WORD)我们可以用同样的方法分解成高低两个8位数据(BYTE),例如:
WORD wValue;
BYTE loValue = LOBYTE(wValue);     //取低8位
BYTE hiValue = HIBYTE(wValue);     //取高8位

如何将CString类型的变量赋给char*类型的变量
1、GetBuffer函数:
使用CString::GetBuffer函数。
char *p;
CString str="hello";
p=str.GetBuffer(str.GetLength());
str.ReleaseBuffer();

将CString转换成char * 时
CString str("aaaaaaa");
strcpy(str.GetBuffer(10),"aa");
str.ReleaseBuffer();
当我们需要字符数组时调用GetBuffer(int n),其中n为我们需要的字符数组的长度.使用完成后一定要马上调用ReleaseBuffer();
还有很重要的一点就是,在能使用const char *的地方,就不要使用char *

2、memcpy:
CString mCS=_T("cxl");
char mch[20];
memcpy(mch,mCS,20);

3、用LPCTSTR强制转换: 尽量不使用
char *ch;
CString str;
ch=(LPSTR)(LPCTSTR)str;

CString str = "good";
char *tmp;
sprintf(tmp,"%s",(LPTSTR)(LPCTSTR)str);

4、
CString Msg;
Msg=Msg+"abc";
LPTSTR lpsz;
lpsz = new TCHAR[Msg.GetLength()+1];
_tcscpy(lpsz, Msg);
char * psz;
strcpy(psz,lpsz);


CString类向const char *转换
char a[100];
CString str("aaaaaa");
strncpy(a,(LPCTSTR)str,sizeof(a));
或者如下:
strncpy(a,str,sizeof(a));
以上两种用法都是正确地. 因为strncpy的第二个参数类型为const char *.所以编译器会自动将CString类转换成const char *.

CString转LPCTSTR (const char *)
CString cStr;
const char *lpctStr=(LPCTSTR)cStr;

LPCTSTR转CString
LPCTSTR lpctStr;
CString cStr=lpctStr;

将char*类型的变量赋给CString型的变量
可以直接赋值,如:
CString myString = "This is a test";
也可以利用构造函数,如:
CString s1("Tom");

将CString类型的变量赋给char []类型(字符串)的变量
1、sprintf()函数
CString str = "good";
char tmp[200] ;
sprintf(tmp, "%s",(LPCSTR)str); 
(LPCSTR)str这种强制转换相当于(LPTSTR)(LPCTSTR)str
CString类的变量需要转换为(char*)的时,使用(LPTSTR)(LPCTSTR)str

然而,LPCTSTR是const char *,也就是说,得到的字符串是不可写的!将其强制转换成LPTSTR去掉const,是极为危险的!
一不留神就会完蛋!要得到char *,应该用GetBuffer()或GetBufferSetLength(),用完后再调用ReleaseBuffer()。

2、strcpy()函数
CString str;
char c[256];
strcpy(c, str);

char mychar[1024];
CString source="Hello";
strcpy((char*)&mychar,(LPCTSTR)source);


关于CString的使用
1、指定 CString 形参
    对于大多数需要字符串参数的函数,最好将函数原型中的形参指定为一个指向字符 (LPCTSTR) 而非 CString 的 const 指针。
当将形参指定为指向字符的 const 指针时,可将指针传递到 TCHAR 数组(如字符串 ["hi there"])或传递到 CString 对象。
CString 对象将自动转换成 LPCTSTR。任何能够使用 LPCTSTR 的地方也能够使用 CString 对象。

2、如果某个形参将不会被修改,则也将该参数指定为常数字符串引用(即 const CString&)。如果函数要修改该字符串,
则删除 const 修饰符。如果需要默认为空值,则将其初始化为空字符串 [""],如下所示:
void AddCustomer( const CString& name, const CString& address, const CString& comment = "" );

3、对于大多数函数结果,按值返回 CString 对象即可。


串的基本运算
    对于串的基本运算,很多高级语言均提供了相应的运算符或标准的库函数来实现。
为叙述方便,先定义几个相关的变量:
    char s1[20]="dir/bin/appl",s2[20]="file.asm",s3[30],*p;
    int result;
    下面以C语言中串运算介绍串的基本运算
1、求串长
        int strlen(char *s);         //求串s的长度
    【例】printf("%d",strlen(s1));    //输出s1的串长12

2、串复制
    char *strcpy(char *to,*from);//将from串复制到to串中,并返回to开始处指针
    【例】strcpy(s3,s1); //s3="dir/bin/appl",s1串不变


3、联接
    char *strcat(char *to,char *from);//将from串复制到to串的末尾,
                                      //并返回to串开始处的指针
    【例】strcat(s3,"/");    //s3="dir/bin/appl/"
          strcat(s3,s2);     //s3="dir/bin/appl/file.asm"

4、串比较
    int strcmp(char *s1,char *s2);//比较s1和s2的大小,
     //当s1<s2、s1>s2和s1=s2时,分别返回小于0、大于0和等于0的值
    【例】result=strcmp("baker","Baker");    //result>0
            result=strcmp("12","12");        //result=0
          result=strcmp("Joe","joseph")   //result<0

5、字符定位
    char *strchr(char *s,char c);//找c在字符串s中第一次出现的位置,
                                 //若找到,则返回该位置,否则返回NULL
    【例】p=strchr(s2,'.');      //p指向"file"之后的位置
if(p) strcpy(p,".cpp");     //s2="file.cpp"

注意:
     ①上述操作是最基本的,其中后 4个操作还有变种形式:strncpy,strncath和strnchr。
     ②其它的串操作见C的<string.h>。在不同的高级语言中,对串运算的种类及符号都不尽相同
     ③其余的串操作一般可由这些基本操作组合而成

    【例】求子串的操作可如下实现:
    void substr(char *sub,char *s,int pos,int len){
         //s和sub是字符数组,用sub返回串s的第pos个字符起长度为len的子串
         //其中0<=pos<=strlen(s)-1,且数组sub至少可容纳len+1个字符。
       if (pos<0||pos>strlen(s)-1||len<0)
            Error("parameter error!");
       strncpy(sub,&s[pos],len);      //从s[pos]起复制至多len个字符到sub

 

-----------------------------------------------------------------

类型理解
  LPCTSTR类型:
  L表示long指针 这是为了兼容Windows 3.1等16位操作系统遗留下来的,在win32中以及其他的32位操作系统中, long指针和near指针及far修饰符都是为了兼容的作用。没有实际意义。
  P表示这是一个指针
  C表示是一个常量
  T表示在Win32环境中, 有一个_T宏
  STR表示这个变量是一个字符串
详细释义
      这个宏用来表示你的字符是否使用UNICODE, 如果你的程序定义了UNICODE或者其他相关的宏,那么这个字符或者字符串将被作为UNICODE字符串,否则就是标准的ANSI字符串。
  所以LPCTSTR就表示一个指向常固定地址的可以根据一些宏定义改变语义的字符串。
  在程序中我们大部分时间要使用带T的类型定义。
  LPCTSTR == const TCHAR *
  CString 和 LPCTSTR 可以说通用。 原因在于CString定义的自动类型转换,没什么奇特的,最简单的C++操作符重载而已。
  常量字符串ansi和unicode的区分是由宏_T来决定的。但是用_T("abcd")时, 字符串"abcd"就会根据编译时的是否定一_UNICODE来决定是char* 还是 w_char*。 同样,TCHAR 也是相同目的字符宏。 看看定义就明白了。
  简单起见,下面只介绍 ansi 的情况,unicode 可以类推。
  ansi情况下,LPCTSTR 就是 const char*, 是常量字符串(不能修改的)。
  而LPTSTR 就是 char*, 即普通字符串(非常量,可修改的)。
  这两种都是基本类型, 而CString 是 C++类, 兼容这两种基本类型是最起码的任务了。
  由于const char* 最简单(常量,不涉及内存变更,操作迅速), CString 直接定义了一个类型转换函数:
  operator LPCTSTR( )
  {.
  .....
  }
  函数直接返回所维护的字符串。
  当你需要一个const char* 而传入了CString时, C++编译器自动调用 CString重载的操作符 LPCTSTR()来进行隐式的类型转换。
  当需要CString , 而传入了 const char* 时(其实 char* 也可以),C++编译器则自动调用CString的构造函数来构造临时的 CString对象。
  因此CString 和 LPCTSTR 基本可以通用。
  但是 LPTSTR又不同了,它是 char*, 意味着你随时可能修改里面的数据,这就需要内存管理了(如字符串变长,原来的存贮空间就不够了,则需要重新调整分配内存)。
  所以 不能随便的将 const char* 强制转换成 char* 使用。
  例如:
  LPSTR lpstr = (LPSTR)(LPCTSTR)string;
   就是这种不安全的使用方法。
  这个地方使用的是强制类型转换,你都强制转换了,C++编译器当然不会拒绝你,但同时他也认为你确实知道自己要做的是什么。因此是不会给出警告的。
  强制的任意类型转换是C(++)的一项强大之处,但也是一大弊端。这一问题在 vc6 以后的版本(仅针对vc而言)中得到逐步的改进(你需要更明确的类型转换声明)。
  其实在很多地方都可以看到类似 LPSTR lpstr = (LPSTR)(LPCTSTR)string; 的用法,这种情况一般是函数的约束定义不够完善的原因, 比如一个函数接受一个字符串参数的输入,里面对该字符串又没有任何的修改,那么该参数就应该定义成 const char*, 但是很多初学者弄不清const地用法,或者是懒, 总之就是随意写成了 char* 。 这样子传入CString时就需要强制的转换一下。
  这种做法是不安全的,也是不被建议的用法,你必须完全明白、确认该字符串没有被修改。
  CString 转换到 LPTSTR (char*), 预定的做法是调用CString的GetBuffer函数,使用完毕之后一般都要再调用ReleaseBuffer函数来确认修改 (某些情况下也有不调用ReleaseBuffer的,同样你需要非常明确为什么这么做时才能这样子处理,一般应用环境可以不考虑这种情况)。
  同时需要注意的是, 在GetBuffer 和 ReleaseBuffer之间,CString分配了内存交由你来处理,因此不能再调用其他的CString函数。
  CString 转LPCTSTR:
   CString cStr;
  const char *lpctStr=(LPCTSTR)cStr;
  LPCTSTR转CString:
  LPCTSTR lpctStr;
  CString cStr=lpctStr;

 

 

 

---------------暂.完---------------

 

你可能感兴趣的:(指针,关系,CString,字符类型,LPCSRTR)