Micro2440 Nand Flash存储操作之读

mini2440 nand flash (1)
2011-05-10 01:01

一、NandFlash基础知识:
      nandflash在对大容量的数据存储中发挥着重要的作用。相对于norflash,它具有一些优势,但它的一个劣势是很容易产生坏块,因此在使用nandflash时,往往要利用校验算法发现坏块并标注出来,以便以后不再使用该坏块。nandflash没有地址或数据总线,如果是8位nandflash,那么它只有8个IO口,这8个IO口用于传输命令、地址和数据。nandflash主要以page(页)为单位进行读写,以block(块)为单位进行擦除。每一页中又分为main区和spare区,main区用于正常数据的存储,spare区用于存储一些附加信息,如块好坏的标记、块的逻辑地址、页内数据的ECC校验和等。

       三星公司是最主要的nandflash供应商,因此在它所开发的各类处理器中,实现对nandflash的支持就不足为奇了。s3c2440不仅具有nandflash的接口,而且还可以利用某些机制实现直接从nandflash启动并运行程序。

在三星的NAND Flash 中,当CPU从NAND Flash开始启动时,CPU会通过内部的硬件将NAND Flash开始的4KB数据复制到称为“Steppingstone”的4KB的内部RAM中,起始地址为0,然后跳到地址0处开始执行。这也就是我们为什么可以把小于4KB的程序烧到NAND Flash中,可以运行,而当大于4KB时,却没有办法运行,必须借助于NAND Flash的读操作,读取4KB以后的程序到内存中。 
 NAND Flash的寻址方式和NAND Flash的memory组织方式紧密相关。NAND Flash的数据是以bit的方式保存在 memory cell(存储单元)。一般情况下,一个cell中只能存储一个bit。这些cell以8个或者16个为单位,连成 bit line ,形成所谓的byte(x8)/word(x16),这就是NAND Flash的位宽。 
  这些Line会再组成Pape(页)。然后是每32个page形成一个Block,所以一个Block(块)大小是16k.Block是NAND Flash中最大的操作单元,其中的擦除操作是以Block为单位进行擦除的,而读写和编程是以page为单位进行操作的,并且读写之前必须进行flash的擦写。我

二、K9F2G08  8位大页NandFlash

       在这里,我们使用的nandflash为K9F2G08U0A,它是8位的nandflash。不同型号的nandflash的操作会有所不同,但硬件引脚基本相同,这给产品的开发带来了便利。因为不同型号的PCB板是一样的,只要更新一下软件就可以使用不同容量大小的nandflash。

      K9F2G08U0A的一页为(2K+64)字节(加号前面的2K表示的是main区容量,加号后面的64表示的是spare区容量),它的一块为64页,而整个设备包括了2048个块。这样算下来一共有2112M位容量,如果只算main区容量则有256M字节(即256M×8位)。要实现用8个IO口来要访问这么大的容量,K9F2G08U0A规定了用5个周期来实现。第一个周期访问的地址为A0~A7;第二个周期访问的地址为A8~A11,它作用在IO0~IO3上,而此时IO4~IO7必须为低电平;第三个周期访问的地址为A12~A19;第四个周期访问的地址为A20~A27;第五个周期访问的地址为A28,它作用在IO0上,而此时IO1~IO7必须为低电平。前两个周期传输的是列地址,后三个周期传输的是行地址。通过分析可知,列地址是用于寻址页内空间,行地址用于寻址页,如果要直接访问块,则需要从地址A18开始。

    NandFlash有大页和小页之分,一般来说32KB/块的NAND称为小页结构,但现在只有少数几家公司还在生产。128KB/块的NAND称为大页结构,是主力产品线,现在大页结构Nandflash是主流Nandflash。Nandflash的写:虽然在没有数据之前可以一个PAGE 的写,但是一旦涉及到我要修改之前的参数就一定要先擦除。因此写的最小单位Block,也就是说,一次擦除的最少数据单元式128K(大页结构)。而读取的最小单位可以是页,Nandflash是以页为单位就行读写的,一页为2K。

     flash的工艺特点:写入时,1可以改为0,但0是不能改为1的,只有擦除可以把0改为1.。

三、Nandflash宏定义命令操作

      由于所有的命令、地址和数据全部从8位IO口传输,所以nandflash定义了一个命令集来完成各种操作。有的操作只需要一个命令(即一个周期)即可,而有的操作则需要两个命令(即两个周期)来实现。下面的宏定义为K9F2G08U0A的常用命令:

#define CMD_READ1                 0x00              //页读命令周期1

#define CMD_READ2                 0x30              //页读命令周期2

#define CMD_READID               0x90              //读ID命令

#define CMD_WRITE1               0x80              //页写命令周期1

#define CMD_WRITE2               0x10              //页写命令周期2

#define CMD_ERASE1               0x60              //块擦除命令周期1

#define CMD_ERASE2               0xd0              //块擦除命令周期2

#define CMD_STATUS                0x70              //读状态命令

#define CMD_RESET                 0xff               //复位

#define CMD_RANDOMREAD1         0x05       //随意读命令周期1

#define CMD_RANDOMREAD2         0xE0       //随意读命令周期2

#define CMD_RANDOMWRITE         0x85       //随意写命令

在这里,随意读命令和随意写命令可以实现在一页内任意地址地读写。读状态命令可以实现读取设备内的状态寄存器,通过该命令可以获知写操作或擦除操作是否完成(判断第6位),以及是否成功完成(判断第0位)。

四、S3c2440的Nandflash控制器

       下面介绍s3c2440的nandflash控制器。s3c2440支持8位或16位的每页大小为256字,512字节,1K字和2K字节的nandflash,这些配置是通过系统上电后相应引脚的高低电平来实现的。s3c2440还可以硬件产生ECC校验码,这为准确及时发现nandflash的坏块带来了方便。

Nandflash控制器的主要寄存器有:

NFCONF(nandflash配置寄存器),

NFCONT(nandflash控制寄存器),

NFCMMD(nandflash命令集寄存器),

NFADDR(nandflash地址集寄存器),

NFDATA(nandflash数据寄存器),

NFMECCD0/1(nandflash的main区ECC寄存器),

NFSECCD(nandflash的spare区ECC寄存器),

NFSTAT(nandflash操作状态寄存器),

NFESTAT0/1(nandflash的ECC状态寄存器),

NFMECC0/1(nandflash用于数据的ECC寄存器),

NFSECC(nandflash用于IO的ECC寄存器)。

五、宏定义完成数据传输

     NFCMMD,NFADDR和NFDATA分别用于传输命令,地址和数据,为了方便起见,我们可以定义一些宏定义用于完成上述操作:

#define NF_CMD(data)               {rNFCMD  = (data); }        //传输命令

#define NF_ADDR(addr)             {rNFADDR = (addr); }         //传输地址

#define NF_RDDATA()               (rNFDATA)                         //读32位数据

#define NF_RDDATA8()              (rNFDATA8)                       //读8位数据

#define NF_WRDATA(data)         {rNFDATA = (data); }          //写32位数据

#define NF_WRDATA8(data)       {rNFDATA8 = (data); }        //写8位数据

其中rNFDATA8的定义为(*(volatile unsigned char *)0x4E000010)。就是读取一个字节数据的意思

       NFCONF主要用到了TACLS、TWRPH0、TWRPH1,这三个变量用于配置nandflash的时序。

s3c2440的数据手册没有详细说明这三个变量的具体含义,但通过它所给出的时序图,我们可以看出,

TACLS为CLE/ALE有效到nWE有效之间的持续时间,TWRPH0为nWE的有效持续时间,TWRPH1为nWE无效到CLE/ALE无效之间的持续时间,这些时间都是以HCLK为单位的(本文程序中的HCLK=100MHz)。

通过查阅K9F2G08U0A的数据手册,我们可以找到并计算该nandflash与s3c2440相对应的时序:K9F2G08U0A中的tWP与TWRPH0相对应,tCLH与TWRPH1相对应,(tCLS-tWP)与TACLS相对应。K9F2G08U0A给出的都是最小时间,s3c2440只要满足它的最小时间即可,因此TACLS、TWRPH0、TWRPH1这三个变量取值大一些会更保险。在这里,这三个值分别取1,2和0。NFCONF的第0位表示的是外接的nandflash是8位IO还是16位IO,这里当然要选择8位的IO。NFCONT寄存器是另一个需要事先初始化的寄存器。它的第13位和第12位用于锁定配置,第8位到第10位用于nandflash的中断,第4位到第6位用于ECC的配置,第1位用于nandflash芯片的选取,第0位用于nandflash控制器的使能。另外,为了初始化nandflash,还需要配置GPACON寄存器,使它的第17位到第22位与nandflash芯片的控制引脚相对应。

六、下面的程序实现了初始化nandflash控制器:

void NF_Init ( void )

{

rGPACON = (rGPACON &~(0x3f<<17)) | (0x3f<<17);            //配置芯片引脚

//TACLS=1、TWRPH0=2、TWRPH1=0,8位IO

rNFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(0<<0);

//非锁定,屏蔽nandflash中断,初始化ECC及锁定main区和spare区ECC,使能nandflash片选及控制器

       rNFCONT = (0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0);

}

       为了更好地应用ECC和使能nandflash片选,我们还需要一些宏定义:

#define NF_nFCE_L()                        {rNFCONT &= ~(1<<1); }

#define NF_CE_L()                            NF_nFCE_L()                                   //打开nandflash片选

#define NF_nFCE_H()                       {rNFCONT |= (1<<1); }

#define NF_CE_H()                           NF_nFCE_H()                            //关闭nandflash片选

#define NF_RSTECC()                       {rNFCONT |= (1<<4); }                     //复位ECC

#define NF_MECC_UnLock()             {rNFCONT &= ~(1<<5); }          //解锁main区ECC

#define NF_MECC_Lock()                 {rNFCONT |= (1<<5); }                     //锁定main区ECC

#define NF_SECC_UnLock()                     {rNFCONT &= ~(1<<6); }          //解锁spare区ECC

#define NF_SECC_Lock()                  {rNFCONT |= (1<<6); }                     //锁定spare区ECC


       NFSTAT是另一个比较重要的寄存器,它的第0位可以用于判断nandflash是否在忙,第2位用于检测RnB引脚信号:

#define NF_WAITRB()                {while(!(rNFSTAT&(1<<0)));}           //等待nandflash不忙

#define NF_CLEAR_RB()           {rNFSTAT |= (1<<2); }                      //清除RnB信号

#define NF_DETECT_RB()         {while(!(rNFSTAT&(1<<2)));}           //等待RnB信号变高,即不忙

       

七、下面就详细介绍K9F2G08U0A的基本操作,包括复位,读ID,页读、写数据,随意读、写数据,块擦除等。

       复位操作最简单,只需写入复位命令即可:

static void rNF_Reset()

{

       NF_CE_L();                               //打开nandflash片选

       NF_CLEAR_RB();                      //清除RnB信号

       NF_CMD(CMD_RESET);           //写入复位命令

       NF_DETECT_RB();                    //等待RnB信号变高,即不忙

       NF_CE_H();                               //关闭nandflash片选

}

       读取K9F2G08U0A芯片ID操作首先需要写入读ID命令,然后再写入0x00地址,就可以读取到一共五个周期的芯片ID,第一个周期为厂商ID,第二个周期为设备ID,第三个周期至第五个周期包括了一些具体的该芯片信息,这里就不多介绍:

static char rNF_ReadID()

{

       char pMID;

       char pDID;

       char cyc3, cyc4, cyc5;

       NF_nFCE_L();                           //打开nandflash片选

       NF_CLEAR_RB();                      //清RnB信号

       NF_CMD(CMD_READID);         //读ID命令

       NF_ADDR(0x0);                        //写0x00地址

       //读五个周期的ID

       pMID = NF_RDDATA8();                   //厂商ID:0xEC

       pDID = NF_RDDATA8();                   //设备ID:0xDA

       cyc3 = NF_RDDATA8();                     //0x10

       cyc4 = NF_RDDATA8();                     //0x95

       cyc5 = NF_RDDATA8();                     //0x44

       NF_nFCE_H();                    //关闭nandflash片选

       return (pDID);

}

       下面介绍读操作,读操作是以页为单位进行的。如果在读取数据的过程中不进行ECC校验判断,则读操作比较简单,在写入读命令的两个周期之间写入要读取的页地址,然后读取数据即可。如果为了更准确地读取数据,则在读取完数据之后还要进行ECC校验判断,以确定所读取的数据是否正确。

八、Nandflash的校验:

nandflash的每一页有两区:main区和spare区,main区用于存储正常的数据,spare区用于存储其他附加信息,其中就包括ECC校验码。当我们在写入数据的时候,我们就计算这一页数据的ECC校验码,然后把校验码存储到spare区的特定位置中,在下次读取这一页数据的时候,同样我们也计算ECC校验码,然后与spare区中的ECC校验码比较,如果一致则说明读取的数据正确,如果不一致则不正确。ECC的算法较为复杂,好在s3c2440能够硬件产生ECC校验码,这样就省去了不少的麻烦事。s3c2440即可以产生main区的ECC校验码,也可以产生spare区的ECC校验码。因为K9F2G08U0A是8位IO口,因此s3c2440共产生4个字节的main区ECC码和2个字节的spare区ECC码。在这里我们规定,在每一页的spare区的第0个地址到第3个地址存储main区ECC,第4个地址和第5个地址存储spare区ECC。产生ECC校验码的过程为:在读取或写入哪个区的数据之前,先解锁该区的ECC,以便产生该区的ECC。在读取或写入完数据之后,再锁定该区的ECC,这样系统就会把产生的ECC码保存到相应的寄存器中。main区的ECC保存到NFMECC0/1中因为K9F2G08U0A是8位IO口,因此这里只用到了NFMECC0,spare区的ECC保存到NFSECC中。对于读操作来说,我们还要继续读取spare区的相应地址内容,已得到上次写操作时所存储的main区和spare区的ECC,并把这些数据分别放入NFMECCD0/1和NFSECCD的相应位置中。最后我们就可以通过读取NFESTAT0/1(因为K9F2G08U0A是8位IO口,因此这里只用到了NFESTAT0)中的低4位来判断读取的数据是否正确,其中第0位和第1位为main区指示错误,第2位和第3位为spare区指示错误。


下面就给出一段具体的页读操作程序:

U8 rNF_ReadPage(U32 page_number)

{

       U32 i, mecc0, secc;

NF_RSTECC();                   //复位ECC

       NF_MECC_UnLock();          //解锁main区ECC

       NF_nFCE_L();                           //打开nandflash片选

       NF_CLEAR_RB();                      //清RnB信号

       NF_CMD(CMD_READ1);           //页读命令周期1

       //写入5个地址周期

       NF_ADDR(0x00);                                            //列地址A0~A7

       NF_ADDR(0x00);                                            //列地址A8~A11

       NF_ADDR((page_number) & 0xff);                  //行地址A12~A19

       NF_ADDR((page_number >> 8) & 0xff);           //行地址A20~A27

       NF_ADDR((page_number >> 16) & 0xff);         //行地址A28

       NF_CMD(CMD_READ2);           //页读命令周期2

       NF_DETECT_RB();                    //等待RnB信号变高,即不忙

      

       //读取一页数据内容

       for (i = 0; i < 2048; i++)

       {

              buffer[i] =  NF_RDDATA8();

       }

      

       NF_MECC_Lock();                     //锁定main区ECC值

      

       NF_SECC_UnLock();                  //解锁spare区ECC

       mecc0=NF_RDDATA();        //读spare区的前4个地址内容,即第2048~2051地址,这4个字节为main区的ECC

       //把读取到的main区的ECC校验码放入NFMECCD0/1的相应位置内

       rNFMECCD0=((mecc0&0xff00)<<8)|(mecc0&0xff);

       rNFMECCD1=((mecc0&0xff000000)>>8)|((mecc0&0xff0000)>>16);

            

       NF_SECC_Lock();               //锁定spare区的ECC值

       secc=NF_RDDATA();           //继续读spare区的4个地址内容,即第2052~2055地址,其中前2个字节为spare区的ECC值

       //把读取到的spare区的ECC校验码放入NFSECCD的相应位置内

       rNFSECCD=((secc&0xff00)<<8)|(secc&0xff);

       NF_nFCE_H();             //关闭nandflash片选

      

       //判断所读取到的数据是否正确

       if ((rNFESTAT0&0xf) == 0x0)

              return 0x66;                  //正确

        else

              return 0x44;                  //错误

      

}

这段程序是把某一页的内容读取到全局变量数组buffer中。该程序的输入参数直接就为K9F2G08U0A的第几页,例如我们要读取第128064页中的内容,可以调用该程序为:rNF_ReadPage(128064);。由于第128064页是第2001块中的第0页(128064=2001×64+0),所以为了更清楚地表示页与块之间的关系,也可以写为:rNF_ReadPage(2001*64);。

你可能感兴趣的:(算法,IO,cmd,Flash,存储,buffer)