基于opencv 的手势识别(转)

OpenCV模板匹配的方法识别手势(修改版)

找不原出处。http://blog.ednchina.com/opencv2008/202330/message.aspx

//修改后能运行的程序,但是结果好像不是很好

//我的机子是赛扬600,超频到900在用,内存是256sdram,刚才调的时候居然

//内存不够用了,又很多地方需要改进,如果有时间,我会把改了的重新上传

//还有个问题就是,偶尔会定位到我的脸上,估计是我的脸长的太像手了 : )

//采用模板匹配的方法识别手势

//这次修改了内存消耗猛增的bug,但是仍然有小幅增长,只要测试时间在半个

//小时之内,一般不会出现内存不足的提示。

//修正了原来版本在读 取10幅图后显示错误的问题

//测试图片请在《[资料]OpenCV模板匹配的方 法识别手势》里面下载

#ifdef _CH_

#define WIN32

#error "The file needs cvaux, which is not wrapped yet. Sorry"

#endif

#ifndef _EiC

#include "cv.h"

#include "cxcore.h"

#include "cvaux.h"

#include "highgui.h"

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <assert.h>

#include <math.h>

#include <float.h>

#include <limits.h>

#include <time.h>

#include <ctype.h>

#endif

static CvMemStorage* storage;

//static double color;

static CvSize imgSize;

static CvSize tmplSize;

static CvSeq* contour;

static CvSeq* biggest;

static CvCapture* capture = 0;

static int isHandOpen = 1;

//static double color;

static CvScalar color;

static IplImage *img;

static IplImage *tmpImg;

static IplImage *conv;

static IplImage *H;

static IplImage *S;

static IplImage *V;

static IplImage *tmpH1;

static IplImage *tmpS1;

static IplImage *tmpH2;

static IplImage *tmpS2;

static IplImage *tmpH3;

static IplImage *tmpS3;

static IplImage *openHandTmpl, *closedHandTmpl;

static IplImage *openGrayHandTmpl, *closedGrayHandTmpl;

static IplImage *openscaledTmpl, *closedscaledTmpl;

static IplImage *openMatchResult, *closedMatchResult;

FILE *output;

void handDetect( IplImage *img);

static int numImg = 10;

char *names[] = { "./images/test01.jpg", "./images/test02.jpg", "./images/test03.jpg", "./images/test04.jpg", "./images/test05.jpg",

"../images/test06.jpg", "./images/test07.jpg", "./images/test08.jpg", "./images/test09.jpg", "./images/test10.jpg"};

char *resultsiamge[] = {"result01.jpg","result02.jpg","result03.jpg","result04.jpg","result05.jpg","result06.jpg","result07.jpg",

"result08.jpg","result09.jpg","result10.jpg"};

int main( int argc, char** argv )

{

     int i = 0;

     char filename[80];

     storage = cvCreateMemStorage(0);

 

#ifdef DEBUG

     cvNamedWindow( "Template1", 1 );

     cvNamedWindow( "Template2", 1 );

     cvNamedWindow( "Comp Results1", 1 );

     cvNamedWindow( "Comp Results2", 1 );

     cvNamedWindow( "Skin Detection", 1 );

#endif

     openHandTmpl = cvLoadImage("openHandTmpl.jpg",1);

     closedHandTmpl = cvLoadImage("closedHandTmpl.jpg",1);

 

     // Convert form RGB to GRAY

     tmplSize.width = openHandTmpl->width;

     tmplSize.height = openHandTmpl->height;

 

     openGrayHandTmpl = cvCreateImage( tmplSize, IPL_DEPTH_8U, 1);

     cvCvtColor( openHandTmpl, openGrayHandTmpl, CV_BGR2GRAY );

 

     tmplSize.width = closedHandTmpl->width;

     tmplSize.height = closedHandTmpl->height;

 

     closedGrayHandTmpl = cvCreateImage( tmplSize, IPL_DEPTH_8U, 1);

     cvCvtColor( closedHandTmpl, closedGrayHandTmpl, CV_BGR2GRAY );

     cvNamedWindow("source",1);

     cvMoveWindow("source",0,0);

     cvNamedWindow( "Results", 1 );

     cvMoveWindow("Results",400,300);

     cvAddSearchPath("//images//");

     // Open the Output File

     output = fopen( "results.log", "w" );

     // Color for contour drawing

     color = CV_RGB( 255,255,255 );

 

     if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))

     {

           capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 );

     }

     else if( argc == 2 )

     {

           capture = cvCaptureFromAVI( argv[1] );

     }

 

     if(capture != 0)

     {

           for(;;)

           {

                 IplImage *frame;//, *frame_copy;

                 if( !cvGrabFrame( capture ))

                       break;

                 frame = cvRetrieveFrame( capture );

                 if( !frame )

                       break;

                 imgSize.width = frame->width;

                 imgSize.height = frame->height;

//       frame_copy = cvCloneImage( frame );

                 handDetect( frame );

                 if( cvWaitKey( 10 ) >= 0 )

                       break;

           }

 

           cvReleaseCapture( &capture );

     }

     else

     {

 

           for ( i = 0; i < numImg; i++ )

           {

                 fprintf(output, "Image %i %s ************************/n", i+1, names);

                 strcpy(filename, "result_");

//                  cvNamedWindow( names, 1 );

//                  cvNamedWindow("source",1);

//                  cvMoveWindow("source",0,0);

                 img = cvLoadImage(names[i],1);  

                 cvShowImage("source",img);

                 cvWaitKey(0);

                 if( img )

                 {

                       imgSize.width = img->width;

                       imgSize.height = img->height;

 

                       handDetect( img );

//                        strcat(filename, names);

                       cvSaveImage(resultsiamge[i], img);

                       cvReleaseImage(&img);

                 }

           }

           cvWaitKey(0);

 

//            for ( i = 0; i < numImg; i++ )

//            {

//                  cvDestroyWindow( names);      

//            }

     }

     cvReleaseImage(&tmpImg);

     cvReleaseImage(&conv);

     cvReleaseImage(&H);

     cvReleaseImage(&S);

     cvReleaseImage(&V);

     cvReleaseImage(&tmpH1);

     cvReleaseImage(&tmpH2);

     cvReleaseImage(&tmpH3);

     cvReleaseImage(&tmpS1);

     cvReleaseImage(&tmpS2);

     cvReleaseImage(&tmpS3);

     cvReleaseImage(&openHandTmpl);

     cvReleaseImage(&closedHandTmpl);

     cvReleaseImage(&openGrayHandTmpl);

     cvReleaseImage(&closedGrayHandTmpl);

     cvReleaseImage(&openscaledTmpl);

     cvReleaseImage(&closedscaledTmpl);

     cvReleaseImage(&openMatchResult);

     cvReleaseImage(&closedMatchResult);

     cvReleaseMemStorage(&storage);

     fclose( output );

//      cvDestroyWindow( "Result");  

 

#ifdef DEBUG

     cvDestroyWindow( "Template1");

     cvDestroyWindow( "Template2" );

     cvDestroyWindow( "Comp Results1" );

     cvDestroyWindow( "Comp Results2" );

     cvDestroyWindow( "Skin Detection" );

#endif

 

 

     return 0;

 

}

void handDetect( IplImage *img)

{

// CvSize tmplSize;

     CvSize resultSize;

     IplConvKernel *erosionElement, *dilationElement;

     double contArea, imgArea, maxRatio = 0.0;

     CvRect bndRect = cvRect(0,0,0,0);

     CvPoint pt1, pt2;

     float scaleFactor;

     CvScalar averageValue;

     int startCount = 0;

     int openCount = 0;

     int closedCount = 0;

 

     float openCompRatio = 0.0;

     float closedCompRatio = 0.0;

     float bestRatio = 0.0;

     imgArea = imgSize.width * imgSize.height;

//       Open Template files

//      openHandTmpl = cvLoadImage("openHandTmpl.jpg",1);

//      closedHandTmpl = cvLoadImage("closedHandTmpl.jpg",1);

//      // Convert form RGB to GRAY

//      tmplSize.width = openHandTmpl->width;

//      tmplSize.height = openHandTmpl->height;

//      

//      openGrayHandTmpl = cvCreateImage( tmplSize, IPL_DEPTH_8U, 1);

//      cvCvtColor( openHandTmpl, openGrayHandTmpl, CV_BGR2GRAY );

//      

//      tmplSize.width = closedHandTmpl->width;

//      tmplSize.height = closedHandTmpl->height;

//      

//      closedGrayHandTmpl = cvCreateImage( tmplSize, IPL_DEPTH_8U, 1);

//      cvCvtColor( closedHandTmpl, closedGrayHandTmpl, CV_BGR2GRAY );

// Generate processing images

     tmpImg = cvCloneImage(img);

     conv = cvCreateImage( imgSize, IPL_DEPTH_8U, 3);

     tmpH1 = cvCreateImage( imgSize, IPL_DEPTH_8U, 1);

     tmpS1 = cvCreateImage( imgSize, IPL_DEPTH_8U, 1);

     tmpH2 = cvCreateImage( imgSize, IPL_DEPTH_8U, 1);

     tmpS2 = cvCreateImage( imgSize, IPL_DEPTH_8U, 1);

     tmpH3 = cvCreateImage( imgSize, IPL_DEPTH_8U, 1);

     tmpS3 = cvCreateImage( imgSize, IPL_DEPTH_8U, 1);

     H = cvCreateImage( imgSize, IPL_DEPTH_8U, 1);

     S = cvCreateImage( imgSize, IPL_DEPTH_8U, 1);

     V = cvCreateImage( imgSize, IPL_DEPTH_8U, 1);

     // Flip the image if in capture mode

     if ( capture )

     {

           cvFlip(conv, conv, 0);

     }

     // Image Smoothing

     //cvSmooth(img,tmpImg,CV_BLUR,3,3);

     cvSmooth(img,img,CV_GAUSSIAN,3,3);

 

     // Convert to HSV

     cvCvtColor( tmpImg, conv, CV_BGR2HSV );

 

     // Split to HSV planes

     cvCvtPixToPlane(conv,H,S,V,0);

 

     // Average Illumination

     averageValue = cvAvg( V , 0);

     fprintf(output, "Illumination Level = %f/n", averageValue.val[0]);

 

     // Detect skin tone Hues and Saturations

     // NOTE: Hue values need to be doubled for actual

 

     // Red to Orange Hue with High Saturation

     // Hue 0 to 28 degree and Sat 190 to 200

     cvInRangeS(H,cvScalar(0.0,0.0,0,0),cvScalar(14.0,0.0,0,0),tmpH1);

     cvInRangeS(S,cvScalar(75.0,0.0,0,0),cvScalar(200.,0.0,0,0),tmpS1);

     cvAnd(tmpH1,tmpS1,tmpH1,0);

 

     // Red Hue with Low Saturation

     // Hue 0 to 26 degree and Sat 20 to 90

     cvInRangeS(H,cvScalar(0.0,0.0,0,0),cvScalar(13.0,0.0,0,0),tmpH2);

     cvInRangeS(S,cvScalar(20.0,0.0,0,0),cvScalar(90.0,0.0,0,0),tmpS2);

     cvAnd(tmpH2,tmpS2,tmpH2,0);

 

     // Red Hue to Pink with Low Saturation

     // Hue 340 to 360 degree and Sat 15 to 90

     cvInRangeS(H,cvScalar(170.0,0.0,0,0),cvScalar(180.0,0.0,0,0),tmpH3);

     cvInRangeS(S,cvScalar(15.0,0.0,0,0),cvScalar(90.,0.0,0,0),tmpS3);

     cvAnd(tmpH3,tmpS3,tmpH3,0);

 

     // Combine the Hue and Sat detections

     cvOr(tmpH3,tmpH2,tmpH2,0);

     cvOr(tmpH1,tmpH2,tmpH1,0);

 

     // Dilation and Erosion

 

     // Structuring Element Generation

     dilationElement = cvCreateStructuringElementEx( 5,5,3,3, CV_SHAPE_RECT , 0 );

     erosionElement = cvCreateStructuringElementEx( 5,5,3,3, CV_SHAPE_RECT , 0 );

 

     // Dilation adds a layer on, and returns things to the correct size.

     cvDilate(tmpH1,tmpH2,dilationElement,1);

 

     // Erosion peels a layer of pixels off, and makes small regions disappear

     cvErode(tmpH1,tmpH3,erosionElement,1);

 

     // Find the contours of all remaining objects

     contour = 0;

     biggest = 0;

     cvFindContours( tmpH3, storage, &contour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );

     cvZero(tmpH1);

 

     // contour now contains a CvSequence of all of the contours

     for( ; contour != 0; contour = contour->h_next )

     {

           contArea = fabs(cvContourArea( contour, CV_WHOLE_SEQ ));

 

           // Ignore very small contours

           if ( contArea/imgArea >= 0.015 )

           {

                 cvDrawContours( tmpH1, contour, color, color, 0, -1, 8 );

                 bndRect = cvBoundingRect( contour, 0 );

 

                 // Scale the templates and result images

                 scaleFactor = ((float)bndRect.width / (float)openHandTmpl->width);

                 tmplSize.width = scaleFactor * openHandTmpl->width;

                 tmplSize.height = scaleFactor * openHandTmpl->height;

                 openscaledTmpl = cvCreateImage( tmplSize, IPL_DEPTH_8U, 1);

                 closedscaledTmpl = cvCreateImage( tmplSize, IPL_DEPTH_8U, 1);

                 openMatchResult = cvCreateImage( tmplSize, IPL_DEPTH_8U, 1);

                 closedMatchResult = cvCreateImage( tmplSize, IPL_DEPTH_8U, 1);

                 cvResize( openGrayHandTmpl,openscaledTmpl, CV_INTER_LINEAR );

                 cvResize( closedGrayHandTmpl,closedscaledTmpl, CV_INTER_LINEAR );

 

                 // Set ROI for image

                 bndRect.width = tmplSize.width;

                 bndRect.height = tmplSize.height;

                 cvSetImageROI(tmpH1, bndRect);

 

                 // Check that ROI matches the tmplate sizes

                 // If the ROI is too near the edge og the image then the

                 // ROI may be truncated when it is set and will not match the bndRect

                 if ( tmpH1->roi->width != bndRect.width || tmpH1->roi->height != bndRect.height )

                 {

                 }

                 else

                 {

                       // Compare the Templates to the image ROI

                       cvCmp( tmpH1,openscaledTmpl, openMatchResult, CV_CMP_EQ );

                       cvCmp( tmpH1,closedscaledTmpl, closedMatchResult, CV_CMP_EQ );

                 }

 

                 // Analyze the results

                 startCount = cvCountNonZero( tmpH1 );

                 openCount = cvCountNonZero( openMatchResult );

                 closedCount = cvCountNonZero( closedMatchResult );

 

                 openCompRatio = (float)openCount/(float)startCount;

                 closedCompRatio = (float)closedCount/(float)startCount;

                 bestRatio = 0.0;

 

                 // Small regions may give eroneous results

                 if ( openCompRatio > 1.0 ) openCompRatio = 0.0;

                 if ( closedCompRatio > 1.0 ) closedCompRatio = 0.0;

 

                 // Compare the Open and closed hand results

                 if ( openCompRatio > closedCompRatio )

                 {

                       if ( openCompRatio > maxRatio )

                       {

                             maxRatio = openCompRatio;

                             biggest = contour;

                             isHandOpen = 1;

                       }

                 }

                 else

                 {

                       if ( closedCompRatio > maxRatio )

                       {

                             maxRatio = closedCompRatio;

                             biggest = contour;

                             isHandOpen = 0;

                       }

                 }

                 // Reset ROI

                 cvResetImageROI( tmpH1 );

 

                 // Output the results

                 fprintf(output, "Contour Non-zero Count = %i/n", startCount);

                 fprintf(output, "Open Hand Matched Non-zero Count   = %i Open Hand Ratio   = %f/n", openCount, openCompRatio);

                 fprintf(output, "Clased Hand Matched Non-zero Count = %i Clased Hand Ratio = %f/n/n", closedCount, closedCompRatio);

 

#ifdef DEBUG

                 cvShowImage("Comp Results1",openMatchResult);

                 cvShowImage("Comp Results2",closedMatchResult);

                 cvShowImage("Template1",openscaledTmpl);

                 cvShowImage("Template2",closedscaledTmpl);

                 cvShowImage("Skin Detection",tmpH1);

                 cvWaitKey(0);

#endif

           }

           cvZero(tmpH1);

     }

 

     // Draw Detection Rectangle

     // Red for Open Hand

     // Green for Closed Hand

     if ( biggest && maxRatio > 0.60 )

     {

           bndRect = cvBoundingRect( biggest, 0 );

           cvResetImageROI( img );

           pt1.x = bndRect.x;

           pt1.y = bndRect.y;

           pt2.x = bndRect.x + bndRect.width;

           pt2.y = bndRect.y + bndRect.height;

 

           if ( isHandOpen )

           {

                 cvRectangle( img, pt1, pt2, CV_RGB(255,0,0), 5 );

           }

           else

           {

                 cvRectangle( img, pt1, pt2, CV_RGB(0,255,0), 5 );

           }

     }

 

     // Display the results

     cvShowImage("Results",img);

     cvWaitKey(0);

     // If we found any contours then free the memory they use.

     if (contour!=NULL)

     {

           cvClearSeq(contour);

     }

     cvClearMemStorage(storage);

     cvReleaseImage(&tmpImg);

     cvReleaseImage(&conv);

     cvReleaseImage(&tmpH1);

     cvReleaseImage(&tmpS1);

     cvReleaseImage(&tmpH2);

     cvReleaseImage(&tmpS2);

     cvReleaseImage(&tmpH3);

     cvReleaseImage(&tmpS3);

     cvReleaseImage(&H);

     cvReleaseImage(&S);

     cvReleaseImage(&V);

     cvReleaseImage(&openscaledTmpl);

     cvReleaseImage(&closedscaledTmpl);

     cvReleaseImage(&openMatchResult);

     cvReleaseImage(&closedMatchResult);

}

#ifdef _EiC

main(1,"HandDetect.c");

#endif

 

 

你可能感兴趣的:(image,processing,float,templates,output,generation)