- 现在的AI,到底是背答案的高手,还是真正的会思考
沐凡资源
人工智能
你的孩子用AI写作业,你以为他在抄答案,但AI可能连自己都不知道答案是怎么来的。最近朋友圈被小学生用DeepSeek秒杀作业的新闻给刷屏了。家长们一方面惊叹,“这玩意儿比家教还靠谱呢”,另一方面又焦虑,“孩子会不会被AI养废啦”。这让我也产生了一个疑问:现在的AI究竟是背答案的复读机呢,还是真会推理的最强大脑?于是我搜索了很多资料来了解这件事。毕竟这事儿可不单单跟作业有关系——它对未来的AI起着决
- 量子信息理论入门:探索量子世界的奇妙信息处理方式
Echo_Wish
Python进阶量子计算
量子信息理论入门:探索量子世界的奇妙信息处理方式在日益智能化的现代世界,信息论是各个领域的“幕后英雄”,从通信、数据压缩到加密,无处不在。而量子信息理论则是它的升级版,利用量子力学的奇妙特性,为信息处理开辟了全新的天地。那么,什么是量子信息理论?它与传统信息论有何不同?今天,我,Echo_Wish,将带你解锁量子信息理论的奥秘,用通俗的方式让你感受到这门学科的魅力。一、什么是量子信息理论?量子信息
- 目前一站式LIMS实验室系统在我国的应用情况
谱标LIMS实验室系统
LIMS实验室系统LIMS实验室系统LIMS系统实验室系统数据库大数据
一站式LIMS实验室系统全称为实验室信息管理系统。它是计算机网络技术,数据库技术,数据通讯,信息管理等多学科集成的软件产品。优良的LIMS系统可以有效地实施质量保证和质量控制流程,让不同岗位的人员按各自的权限分享不同级别的信息资源,完成约定的工作。能及时发现测试、服务过程中的异常情况。可以自动进行信息反馈与记录跟踪,追本溯源。系统能对原始数据进行二次加工处理,提供各种统计数据,供高层管理人员分析决
- 互信息详解
Shockang
机器学习数学通关指南机器学习人工智能数学信息论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文互信息:变量间关联性的量化利器互信息(MutualInformation)是信息论中的核心概念,也是
- 机器学习篇——决策树基础
巷955
机器学习算法决策树
引言:决策树是一种常见的机器学习算法,广泛应用于分类和回归任务。它通过树状结构表示决策过程,每个内部节点代表一个特征测试,每个分支代表一个可能的测试结果,而每个叶节点则代表一个类别或回归值。本文将详细介绍决策树的原理、构建过程、优缺点以及实际应用。1.决策树的基本概念1.1什么是决策树?决策树是一种监督学习算法,主要用于分类和回归任务。它通过递归地将数据集划分为更小的子集,最终生成一棵树状结构。决
- AI 工具层出不穷,Manus 爆火,如何理性看待?
gange574
人工智能AI写作aiAI软件AI平台AI编程AI网站
近期AI领域动作不断,吸满了人们的关注,特别是被一些自媒体文章,引起了各种焦虑,让人觉得:是不是马上要被AI取代了?是不是马上就要失业了?我还没跟上AI时代,是不是要被这个时代给抛弃了?内心充满了焦虑与不安!要我说,大可不必,我的答案是:以人为本,AI为辅。首先咱们一起回顾一下,从火爆全球的ChatGPT,到春节期间国产deepseek被大家所熟知,成了手机里的「固定嘉宾」,现在遇事不决:问一下d
- 深入浅出地理解-随机森林与XGBoost模型
HP-Succinum
机器学习随机森林集成学习机器学习
目录一、决策树的不足与集成学习的优势1.1决策树的缺点1.2集成学习:通过集成多个模型提升稳定性二、随机森林:通过多棵决策树减少方差2.1随机森林的基本原理2.2随机森林的优势2.3随机森林的参数调整三、XGBoost:高效且强大的Boosting方法3.1Boosting的基本原理3.2XGBoost的优化3.3XGBoost的优点四、随机森林与XGBoost的对比五、总结在机器学习的实战中,决
- 《从信息论视角:DataWorks平台下人工智能探寻最优数据编码的深度剖析》
程序猿阿伟
人工智能
在数字化时代,数据如汹涌浪潮般不断涌现,其规模之大、增长速度之快超乎想象。企业和组织每天都要面对海量数据的存储与传输挑战,如何在有限的资源条件下高效处理这些数据,成为亟待解决的关键问题。此时,信息论与人工智能算法为我们开辟了一条新的探索路径,尤其在DataWorks这样强大的大数据平台上,二者的结合蕴含着巨大的潜力。信息论,作为一门研究信息的度量、传输、存储和处理的学科,为理解数据的本质提供了深刻
- 《从信息论视角:DataWorks平台下人工智能探寻最优数据编码的深度剖析》
人工智能深度学习
在数字化时代,数据如汹涌浪潮般不断涌现,其规模之大、增长速度之快超乎想象。企业和组织每天都要面对海量数据的存储与传输挑战,如何在有限的资源条件下高效处理这些数据,成为亟待解决的关键问题。此时,信息论与人工智能算法为我们开辟了一条新的探索路径,尤其在DataWorks这样强大的大数据平台上,二者的结合蕴含着巨大的潜力。信息论,作为一门研究信息的度量、传输、存储和处理的学科,为理解数据的本质提供了深刻
- 【西瓜书《机器学习》七八九章内容通俗理解】
游戏乐趣
人工智能机器学习人工智能
第七章:贝叶斯分类器7.1贝叶斯决策论基础核心概念:贝叶斯分类器是基于概率来做分类决策的。简单来说,就是根据已知的一些条件,去计算每个类别出现的概率,然后选择概率最大的那个类别作为分类结果。就好比你在猜一个盒子里装的是红球还是蓝球,你可以根据之前从这个盒子里摸球的一些经验(比如摸出红球的次数多),来判断这次盒子里更有可能是红球还是蓝球。例子:假如你要判断一幅图片是猫还是狗。你知道在所有的图片数据里
- 网格交易策略调研
柯柯就是我
金融学习记录金融
背景介绍定义:网格交易,是量化交易的一种,是一种稳定的、保险的、收益率不会大起大落的交易方式。起源:信息论之父申农:任何一个价位买进资金的50%,也就是说资金数量:股票市值=50%:50%。股票价格上涨一定幅度就卖出一部分股票,保持剩余的资金数量:剩余股票市值=50%:50%;反之股票价格下跌一定幅度,就用剩余资金买进一部分股票,始终保持剩余资金数量:剩余股票市值=50%:50%。用这个办法来对付
- 丹尼尔·卡尼曼《噪声》——读书笔记
阅读读书笔记思维
好久没有写博客了,趁着出差有时间,读完了《噪声》这本买了很久的书,整体感觉还是有一些认知层面的迭代的,也整理下书中的一些内容,让自己能够沉下心来把思维和逻辑整理清楚,也能给大家做个分享。书籍介绍这本书是已故诺贝尔经济学奖得主丹尼尔·卡尼曼的新书,之前就是在这位作者去世的时候买回来学习的。本书主要讲的是人类在判断过程中的一个常见“噪声”问题,由于人或者时间原因导致决策的随机性偏差。这本书通过对人类决
- python与C系列语言的差异总结(4)
yyc_audio
pythonc语言前端
如果具有传统编译型语言的经验,大家可能会对是否使用字典而犹豫不决,担心字典的效率比列表或数组低。事实上Python字典的执行速度已经相当快了。Python语言的许多内部特性都依赖于字典,为提高字典的效率已经投入了大量的心血。Python的所有数据结构都经过了高度优化,因此不应该花太多时间去考虑哪个更快,哪个效率更高。pass语句也可在Python中需要语句的其他任何地方使用。pass语句用作语句的
- kl散度度量分布_解读KL散度:从定义到优化方法
weixin_39846364
kl散度度量分布
Kullback-Leibler散度是计算机科学领域内的一个重要概念。数据科学家WillKurt通过一篇博客文章对这一概念进行了介绍,机器之心技术分析师在此基础上进行了解读和扩充。本文为该解读文章的译文。引言这篇博文将介绍KL散度,即相对熵。这篇博文给出了一个理解相对熵的简单例子,因此这里不会试图重写原作者的内容。除了阅读原博客文章之外,这里还会根据我在信息论方面的工作经验给出一些基于原博文的额外
- 跟着小K开始零基础Python量化分析之旅 1: 初入量化江湖 —— Python与量化的第一次邂逅
山海青风
python量化分析
第一章:初入量化江湖——Python与量化的第一次邂逅故事情境在一个热闹的理财交流群里,小K偶然听到有人提起“量化投资”。那一刻,他心中燃起了一种莫名的好奇与憧憬:“量化投资究竟是什么?我真的能用代码来炒股吗?”然而,面对这一连串新奇的名词,小K感到有些茫然,一头雾水。就在他犹豫不决的时候,一位神秘的前辈私信他:“想要在量化江湖中闯出一片天地,首先得打好基础。先从搞定Python和学习如何读取股票
- vscode终端出现显示两个环境名的问题决解方法
墨小傲
vscodeide编辑器
用vscodessh远程连接Linux服务器的时候出现了显示两个环境名的问题。服务器上设置的是每个terminal初始化自动激活base环境。这个问题应该是vscodepython插件自动激活环境和conda的自动激活环境之间的不兼容导致的显示问题,解决方法是关闭conda的自动激活环境。参考ActivateEnvironmentsinTerminalUsingEnvironmentVariabl
- 运筹说 第130期 | 对策论引言
运筹说
运筹学
通过对对策论基础知识进行梳理和总结,小编绘制了《对策论思维导图》,如下图所示,对策论章节一共包含4个小节。第1小节是对策论引言。介绍了对策论的基本概念,包含对策行为和对策论、对策现象的三要素、对策问题举例及对策的分类。第2小节是矩阵对策的基本理论。介绍了矩阵对策的纯策略、矩阵对策的混合策略和矩阵对策的基本定理。第3小节是矩阵对策的解法。分别介绍了图解法、方程组法和线性规划法3种矩阵对策的求解方法。
- 机器学习的数学基础(三)——概率与信息论
梦醒沉醉
数学基础概率论信息论
目录1.随机变量2.概率分布2.1离散型变量和概率质量函数2.2连续型变量和概率密度函数3.边缘概率4.条件概率5.条件概率的链式法则6.独立性和条件独立性7.期望、方差和协方差7.1期望7.2方差7.3协方差8.常用概率分布8.1均匀分布U(a,b)U(a,b)U(a,b)8.2Bernoulli分布8.3Multinoulli分布8.4高斯分布(正态分布)N(x;μ,σ2)N(x;\mu,\s
- Spring MVC的控制器是不是单例模式,如果是,有什么问题,怎么决?思维导图 代码示例(java 架构)
用心去追梦
java架构开发语言
SpringMVC控制器的单例模式特性在SpringMVC中,默认情况下控制器(带有@Controller或@RestController注解的类)是按照单例模式创建的。这意味着在整个应用程序生命周期内,只有一个实例会被创建并被所有请求共享。这与Servlet的行为相似,因为Servlet容器也是以单例模式管理Servlet实例的。单例模式的优点:性能优化:减少了对象创建和销毁的开销。资源利用率:
- 动态规划之背包问题全解
学会了,不,学废了
动态规划
概述———动态规划提出人:理查德·贝尔曼本质:一张表格处理方法内容:把原问题分解为若干子问题,自底向上先求解最小子问题,把结果储存在表格中,求解大的子问题时直接从表格中查询小的子问题的解,以避免重复计算,从而提高效率。一、动态规划求解原理适用范围:问题需要具备3个性质———最优子结构、子问题重叠、无后效性。最优子结构指问题最优解包含其子问题的最优解,是使用动态规划的基本条件。三要素:状态、阶段、决
- 互信息的定义与公式
亲持红叶
信息论相关机器学习人工智能
互信息定义公式从条件熵中我们知道,当获取的信息和要研究的食物”有关系时“,这些信息才能帮助我们消除不确定性。如何衡量获取信息和要研究事物“有关系”呢?比如常识告诉我们,一个随机事件“今天深圳下雨”和另一个随机事件“过去24小时深圳空气湿度”相关性很大,但是相关性到底有多大?怎么衡量?再比如“过去24小时深圳空气湿度”似乎就和“北京天气”相关性不大。香农在信息论中提出”互信息“的概念作为两个随机事件
- AGI方向研究
微醺欧耶
agi
要成为一名合格的AGI(通用人工智能)实习生,你需要具备跨学科的知识体系、扎实的技术能力以及前沿研究视野。以下是基于你当前基础的能力扩展方向、关键研究领域以及未来发展的详细分析:---###**一、AGI实习生需具备的核心能力**####1.**数学与理论基础**-**数学基础**:线性代数(矩阵运算、特征值)、概率统计(贝叶斯理论、分布模型)、微积分(梯度优化)、信息论(熵、KL散度)。-**计
- 论文解读(MGAE)《MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs》
虚幻私塾
pythonpython开发语言
优质资源分享学习路线指引(点击解锁)知识定位人群定位Python实战微信订餐小程序进阶级本课程是pythonflask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。Python量化交易实战入门级手把手带你打造一个易扩展、更安全、效率更高的量化交易系统论文信息论文标题:MGAE:MaskedAutoencodersforSelf-SupervisedLearningonG
- 【新书速荐】《Information-Theoretic Radar Signal Processing(信息论雷达信号处理)》
卖酒的雷达算法工程师
概率论
引言最近,由YujieGu博士和YiminD.Zhang教授主编的新书Information-TheoreticRadarSignalProcessing由Wiley-IEEEPress正式出版。这是信息论雷达信号处理领域的首部专著,全书共分14章,汇集了来自学术界、工业界和政府机构的41位世界知名专家(其中15位为IEEEFellow)的最新研究成果。Information-TheoreticR
- 【AI中数学-信息论-综合实例】 缩小AI巨人:大模型神经网络的压缩与裁剪
云博士的AI课堂
AI中的数学人工智能神经网络深度学习知识蒸馏网络裁剪量化技术模型压缩
第六章:信息论-综合实例第二节:缩小AI巨人:大模型神经网络的压缩与裁剪术在本节中,我们将探讨压缩和裁剪大规模神经网络模型的技术,使其更加高效,适用于实际应用。尽管大规模神经网络在AI中具有强大的能力,但由于其高计算需求、内存使用和推理时间,它们在实际部署中往往面临一些限制。模型压缩和裁剪技术能够使这些“AI巨人”变得更为可管理,同时在性能上不至于损失太多。我们将通过五个在实际应用中具有代表性的案
- 瞎想:控制论、信息论与系统论:未来汽车产品的“三论融合”与深度思考
天天爱吃肉8218
汽车
引言在科技飞速发展的今天,控制论、信息论与系统论(简称“三论”)作为20世纪的科学革命,正在深刻影响未来汽车产品的设计与研发。无论是自动驾驶、车联网,还是软件定义汽车(SDV),背后都离不开“三论”的理论支撑。本文将系统性地阐述“三论”的原理、本质及未来发展,并深入探讨其与未来汽车产品的深度关联,为读者提供一份兼具专业性与前瞻性的技术解读。一、控制论、信息论与系统论的原理与本质1.控制论:从“反馈
- FPGA与ASIC:到底选哪个好?
博览鸿蒙
FPGAfpga开发
不少人想转行FPGA,但在ASIC和FPGA之间犹豫不决。要做出选择,首先需要清楚两者的区别和各自特点。FPGA(FieldProgrammableGateArray)是一种现场可编程门阵列芯片,本质上它是一种半定制的芯片,可以根据需要重新编程,以适应不同的功能需求。FPGA兼具硬件和软件的特点,可以在硬件层面进行控制,也可以编程实现算法功能,具有较高的灵活性和快速开发的优势。而ASIC(Appl
- 音视频开发成长之路与音视频知识点总结
Linux服务器开发
音视频开发webrtcffmpeg音视频开发流媒体服务器开发webrtcFFmpeg嵌入式音视频开发
音视频涉及语音信号处理、数字图像处理、信息论、封装格式、编解码、流媒体协议、网络传输、渲染、算法等。在现实生活中,音视频发挥着越来越重要的作用,如视频会议、直播、短视频、播放器、语音聊天等。所以从事音视频开发是一件有意义的事情,机遇和挑战并存。本文将从:音视频开发基础、音视频高级成长、音视频工作方向、音视频开源库、音视频相关书籍,配套的学习资源等几个方面来进行介绍。那么我们该如何系统的学习音视频开
- php设置文件路径的常量方法_php路径和魔术常量的一些总结
大小冰冰
php设置文件路径的常量方法
1.函数2.超全局变量3.魔术常量要描述一个文件的位置,可以使用决对路径和相对路径。绝对路径是从根开始一级一级地进入各个子目录,最后指定该文件名或目录名。而相对目录是从当前目录进入某目录,最后指定该文件名或目录名。在系统的每个目录下都有两个特殊的目录“.”和“..”,分别指示当前目录和当前目录的父目录(上一级目录)。例如:复制代码代码如下:$unixPath=“/var/www/html/inde
- php 路径解析,PHP解析目录路径的3个函数总结_php技巧
吕驰宇
php路径解析
要描述一个文件的位置,可以使用决对路径和相对路径。绝对路径是从根开始一级一级地进入各个子目录,最后指定该文件名或目录名。而相对目录是从当前目录进入某目录,最后指定该文件名或目录名。在系统的每个目录下都有两个特殊的目录“.”和“..”,分别指示当前目录和当前目录的父目录(上一级目录)。例如:代码如下:$unixPath=“/var/www/html/index.php”;–在UNIX系统中绝对路径,
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name