UVA 11168 Airport 凸包+直线的一般式



   给N个点,找到一条直线,使得所有点到这条直线的距离之和最小。
   首先可以确定,这条直线一定是凸包上的一条直线,那么可以求出凸包,然后枚举每条直线,求出所有点到该直线的距离和,点到直线的距离公式为fabs(Ax+By+C)/sqrt(A^2+B^2),而且所有点都在直线的一个方向,那么我们可以预先存下来所有x和y的和,这样给一个直线的一般式,我们就可以O(1)求出所有点到该直线的距离之和。




#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <cmath>
#include <vector>
typedef double type;
using namespace std;
const double PI=acos(-1.0);
const double eps=1e-10;

struct Point
{
    type x,y;
    Point(){}
    Point(type a,type b)
    {
        x=a;
        y=b;
    }
    void read()
    {
        scanf("%lf%lf",&x,&y);
    }
    void print()
    {
        printf("%.6lf %.6lf",x,y);
    }

};
typedef Point Vector;
Vector operator + (Vector A,Vector B)
{
    return Vector(A.x+B.x,A.y+B.y);
}
Vector operator - (Point A,Point B)
{
    return Vector(A.x-B.x,A.y-B.y);
}
Vector operator * (Vector A,type p)
{
    return Vector(A.x*p,A.y*p);
}
Vector operator / (Vector A,type p)
{
    return Vector(A.x/p,A.y/p);
}
bool operator < (const Point &a,const Point &b)
{
    return a.x<b.x || (a.x==b.x && a.y<b.y);
}

int dcmp(double x)
{
    if (fabs(x)<eps) return 0;
    else return x<0?-1:1;
}
bool operator == (const Point& a,const Point b)
{
    return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0;
}
//atan2(x,y) :向量(x,y)的极角,即从x轴正半轴旋转到该向量方向所需要的角度。
type Dot(Vector A,Vector B)
{
    return A.x*B.x+A.y*B.y;
}
type Cross(Vector A,Vector B)
{
    return A.x*B.y-A.y*B.x;
}
type Length(Vector A)
{
    return sqrt(Dot(A,A));
}
type Angle(Vector A,Vector B)
{
    return acos(Dot(A,B))/Length(A)/Length(B);
}

type Area2(Point A,Point B,Point C)
{
    return Cross(B-A,C-A);
}
Vector Rotate(Vector A,double rad)
{
    return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}

Vector Normal(Vector A)//单位法线,左转90度,长度归一
{
    double L=Length(A);
    return Vector(-A.y/L,A.x/L);
}

Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
{
    Vector u=P-Q;
    double t=Cross(w,u)/Cross(v,w);
    return P+v*t;
}

double DistanceToLine(Point P,Point A,Point B)
{
    Vector v1=B-A,v2=P-A;
    return fabs(Cross(v1,v2))/Length(v1);
}
double DistanceToSegment(Point P,Point A,Point B)
{
    if (A==B) return Length(P-A);
    Vector v1=B-A,v2=P-A,v3=P-B;
    if (dcmp(Dot(v1,v2))<0) return Length(v2);
    else if (dcmp(Dot(v1,v3))>0) return Length(v3);
    else return fabs(Cross(v1,v2))/Length(v1);
}
Point GetLineProjection(Point P,Point A,Point B)//P在AB上的投影
{
    Vector v=B-A;
    return A+v*(Dot(v,P-A)/Dot(v,v));
}

bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
    double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
    c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
    return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
}

bool OnSegment(Point p,Point a1,Point a2)
{
    return dcmp(Cross(a1-p,a2-p))==0 && dcmp(Dot(a1-p,a2-p))<0;
}

double ConvexPolygonArea(Point* p,int n)//多边形面积
{
    double area=0;
    for (int i=1; i<n-1; i++)
    area+=Cross(p[i]-p[0],p[i+1]-p[0]);
    return area/2.0;
}
double PolygonArea(Point* p,int n)//有向面积
{
    double area=0;
    for (int i=1; i<n-1; i++)
    area+=Cross(p[i]-p[0],p[i+1]-p[0]);
    return area/2.0;
}
struct Line
{
    Point p;
    Vector v;
    double ang;
    Line(){};
    Line(Point PP,Vector vv)
    {
        p=PP;
        v=vv;
        ang=atan2(v.y,v.x);
    }
    bool operator< (const Line& L)const
    {
        return ang<L.ang;
    }
    Point point(double t)
    {
        return p+v*t;
    }
};
struct Circle
{
    Point c;
    double r;
    Circle()
    {
    }
    Circle(Point cc,double rr)
    {
        c=cc;
        r=rr;
    }
    Point point(double a)
    {
        return Point(c.x+cos(a)*r,c.y+sin(a)*r);
    }
};
int getLineCircleIntersection(Line L,Circle C,double& t1,double &t2,vector<Point>& sol)
{
    double a=L.v.x, b=L.p.x-C.c.x, c=L.v.y, d=L.p.y-C.c.y;
    double e=a*a+c*c,f=2*(a*b+c*d), g=b*b+d*d-C.r*C.r;
    double delta=f*f-4*e*g;//判别式
    if (dcmp(delta)<0) return 0;//相离
    if (dcmp(delta)==0)
    {
        t1=t2=-f/(2*e);
        sol.push_back(L.point(t1));
        return 1;
    }//相切
    t1=(-f-sqrt(delta))/(2*e); sol.push_back(L.point(t1));
    t2=(-f+sqrt(delta))/(2*e); sol.push_back(L.point(t2));
    return 2;
}
double angle(Vector v)//向量极角
{
    return atan2(v.y,v.x);
}
int getCircleCircleIntersection(Circle C1,Circle C2,vector<Point>& sol)
{
    double d = Length(C1.c-C2.c);
    if (dcmp(d)==0)
    {
        if (dcmp(C1.r-C2.r)==0) return -1;
        return 0;
    }
    if (dcmp(C1.r+C2.r-d)<0) return 0;
    if (dcmp(fabs(C1.r-C2.r)-d)>0) return 0;
    double a=angle(C2.c-C1.c);
    double da= acos((C1.r*C1.r+d*d-C2.r*C2.r)/(2*C1.r*d));
    Point p1=C1.point(a-da),p2=C1.point(a+da);
    sol.push_back(p1);
    if (p1==p2) return 1;
    sol.push_back(p2);
    return 2;
}
int getTangents(Point p,Circle C,Vector* v)
{
    Vector u=C.c-p;
    double dist=Length(u);
    if (dist<C.r) return 0;
    else if (dcmp(dist-C.r)==0)
    {
        v[0]=Rotate(u,PI/2);
        return 1;
    }
    else
    {
        double ang=asin(C.r/dist);
        v[0]=Rotate(u,-ang);
        v[1]=Rotate(u,+ang);
        return 2;
    }
}
int getTangents(Circle A,Circle B,Point* a,Point* b)
{
    int cnt=0;
    if (A.r<B.r)
    {
        swap(A,B); swap(a,b);
    }
    int d2=(A.c.x-B.c.x)*(A.c.x-B.c.x)+(A.c.y-B.c.y)*(A.c.y-B.c.y);
    int rdiff=A.r-B.r;
    int rsum=A.r+B.r;
    if (d2<rdiff*rdiff) return 0;
    double base=atan2(B.c.y-A.c.y,B.c.x-A.c.x);
    if (d2==0 && A.r==B.r) return -1;

    if (d2==rdiff*rdiff)
    {
        a[cnt]=A.point(base); b[cnt]=B.point(base); cnt++;
        return 1;
    }
    double ang=acos((A.r-B.r)/sqrt(d2));
    a[cnt]=A.point(base+ang); b[cnt]=B.point(base+ang); cnt++;
    a[cnt]=A.point(base-ang); b[cnt]=B.point(base-ang); cnt++;
    if (d2==rsum*rsum)
    {
        a[cnt]=A.point(base); b[cnt]=B.point(PI+base); cnt++;
    }
    else if (d2>rsum*rsum)
    {
        double ang=acos((A.r+B.r)/sqrt(d2));
        a[cnt]=A.point(base+ang); b[cnt]=B.point(PI+base+ang); cnt++;
        a[cnt]=A.point(base-ang); b[cnt]=B.point(PI+base-ang); cnt++;
    }
    return cnt;
}

int ConvexHull(Point *p, int n,Point *ch)
{
    sort(p,p+n);
    int m=0;
    for (int i=0; i<n; i++)
    {
        while(m>1 && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
        ch[m++]=p[i];
    }
    int k=m;
    for (int i=n-2; i>=0; i--)
    {
        while(m>k && Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
        ch[m++]=p[i];
    }
    if (n>1) m--;
    return m;
}
Point poly[24300];
Point ch[24300];
double sumx,sumy;
int main()
{
    int tt,n;
//    freopen("in.txt","r",stdin);
    scanf("%d",&tt);
    for (int ii=1; ii<=tt; ii++)
    {
        scanf("%d",&n);
        sumx=sumy=0;
        for (int i=0; i<n; i++)
        {
            poly[i].read();
            sumx+=poly[i].x;
            sumy+=poly[i].y;
        }
        Point p,q;
        int size=ConvexHull(poly,n,ch);
        double x2,x1,y2,y1;
        double minn=1e10;
        for (int i=0; i<size; i++)
        {
            double A,B,C;
            int j=(i+1)%size;
            x1=ch[i].x; y1=ch[i].y;
            x2=ch[j].x; y2=ch[j].y;
            if (dcmp(x1-x2)!=0 && dcmp(y1-y2)!=0)
            {
                A=(y2-y1);
                B=-(x2-x1);
                C=-x1*(y2-y1)+y1*(x2-x1);
            }
            else if (dcmp(x1-x2)==0 && dcmp(y1-y2)==0) continue;
            else if (dcmp(x1-x2)==0)
            {
                A=1;
                B=0;
                C=-x1;
            }
            else if (dcmp(y1-y2)==0)
            {
                A=0;
                B=1;
                C=-y1;
            }
            minn=min(minn,fabs(A*sumx+B*sumy+n*C)/sqrt(A*A+B*B));
        }
        if (n>2)
        printf("Case #%d: %.3lf\n",ii,minn/n);
        else
        printf("Case #%d: 0.000\n",ii);
    }

}


你可能感兴趣的:(UVA 11168 Airport 凸包+直线的一般式)