Given an unsorted array of integers, find the length of longest increasing subsequence.
For example,
Given [10, 9, 2, 5, 3, 7, 101, 18]
,
The longest increasing subsequence is [2, 3, 7, 101]
, therefore the length is 4
. Note that there may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.
[思路]
dp. d[i] 为 subset 0...i 的最大Longest increasing sub.
[code]
public class Solution { public int lengthOfLIS(int[] nums) { //[10, 2, 5, 3, 7], if(nums==null || nums.length<1) return 0; int [] d = new int[nums.length]; d[0] = 1; int max = 1; for(int i=1; i<nums.length; i++) { d[i] = 1; for(int j=0; j<i; j++) { if(nums[i] > nums[j]) { d[i] = Math.max(d[i], d[j]+1); } } max = Math.max(max, d[i]); } return max; } }