好久没有写博文了,这题是刚才被lrj的题虐了之后写的,这题的题意是告诉你N个数的序列,每次修改一个位置的值,动态查询区间第k个元素
做法是维护一个线段树,这样我们就可以得到区间的信息,但是这时候我们并不能维护区间有序的序列,所以我们要二分答案,查询l到r区间内比这个数小的有多少,和k做比较,然后最后得到答案,写起来就是一个线段树和一个平衡树,对于平时写数据结构写多的来说代码量一般,我的代码一向都很长,写了200行左右。
/* * Author: Fish@UESTC_Obsidian * Created Time: 2011/09/30 18:40:59 * Project: ZOJ2112-Dynamic_Rankings * Type: ds */ #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <algorithm> using namespace std; typedef long long ll; const int MAX = 50005; const int oo = 0x3f3f3f3f; struct Node { int key, size; Node* c[2]; } memo[MAX * 20], *cur, *nil; int a[MAX], n, q; struct Seg { int l, r; Node* root; } seg[MAX << 2]; inline Node* New(int v) { cur->key = v; cur->size = 1; cur->c[0] = cur->c[1] = nil; return cur++; } inline void rotate(Node*& t, int f) { Node* k = t->c[f ^ 1]; t->c[f ^ 1] = k->c[f]; k->c[f] = t; k->size = t->size; t->size = t->c[0]->size + t->c[1]->size + 1; t = k; } inline void keep(Node*& t, int f) { if (t == nil) return; else if (t->c[f]->c[f]->size > t->c[f ^ 1]->size) rotate(t, f ^ 1); else if (t->c[f]->c[f ^ 1]->size > t->c[f ^ 1]->size) rotate(t->c[f], f), rotate(t, f ^ 1); else return; for (int i = 0; i < 2; i++) keep(t->c[i], i); for (int i = 0; i < 2; i++) keep(t, i); } inline void insert(Node*& t, int v) { if (t == nil) { t = New(v); } else { t->size++; insert(t->c[v >= t->key], v); keep(t, v >= t->key); } } inline Node* del(Node*& t, int v) { Node* p; if (t == nil) return nil; t->size--; if (v == t->key || t->c[v > t->key] == nil) { if (t->c[0] != nil && t->c[1] != nil) p = del(t->c[0], v + 1), t->key = p->key; else p = t, t = t->c[t->c[0] == nil]; return p; } else return del(t->c[v > t->key], v); } inline int getRank(Node* t, int v) { int ret = 0; while (t != nil) if (t->key < v) ret += t->c[0]->size + 1, t = t->c[1]; else t = t->c[0]; return ret; } inline void init() { nil = cur = memo; nil = New(0); nil->size = 0; } inline void init(int k, int l, int r) { seg[k].l = l; seg[k].r = r; seg[k].root = nil; for (int i = l; i <= r; i++) { insert(seg[k].root, a[i]); } if (l == r) return; int mid = l + r >> 1; init(k << 1, l, mid); init(k << 1 | 1, mid + 1, r); } inline void set(int k, int idx, int v) { del(seg[k].root, a[idx]); insert(seg[k].root, v); if (seg[k].l == seg[k].r) return; int mid = seg[k].l + seg[k].r >> 1; if (idx <= mid) set(k << 1, idx, v); else set(k << 1 | 1, idx, v); } inline int read(int k, int l, int r, int v) { if (l > r || seg[k].l > r || seg[k].r < l) return 0; if (seg[k].l >= l && seg[k].r <= r) { return getRank(seg[k].root, v); } return read(k << 1, l, r, v) + read(k << 1 | 1, l, r, v); } inline int doit(int lb, int rb, int k) { int l = -1000000005, r = 1000000005, mid; int ret; while (l < r) { mid = l + r + 1 >> 1; ret = read(1, lb, rb, mid); if (ret < k) l = mid; else r = mid - 1; } return l; } inline void doit() { char op[5]; int l, r, k; init(); init(1, 1, n); while (q--) { scanf("%s", op); if (op[0] == 'Q') { scanf("%d%d%d", &l, &r, &k); printf("%d\n", doit(l, r, k)); } else { scanf("%d%d", &l, &r); set(1, l, r); a[l] = r; } } } int main() { int T; scanf("%d", &T); while (T--) { scanf("%d%d", &n, &q); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); doit(); } return 0; }