总线驱动和具体的平台CPU有关,以2440为例:drivers\i2c\busses\I2c-s3c2410.c
I2C 适配器驱动加载与卸载
I2C 总线驱动模块的 加载函数要完成两个工作。2.通过 i2c_add_adapter()添加 i2c_adapter 的数据结构,当然这个 i2c_adapter 数据结构的成员已经被 xxx 适配器的相应函数指针所初始化。
代码如下:
static int __init i2c_adap_s3c_init(void) { int ret; //这个文件支持2440和2410的i2c驱动 ret = platform_driver_register(&s3c2410_i2c_driver); if (ret == 0) { ret = platform_driver_register(&s3c2440_i2c_driver); if (ret) platform_driver_unregister(&s3c2410_i2c_driver); } return ret; }看下i2c_driver的定义:
static struct platform_driver s3c2440_i2c_driver = { .probe = s3c24xx_i2c_probe,//看这个函数中如何初始化 .remove = s3c24xx_i2c_remove, .resume = s3c24xx_i2c_resume, .driver = { .owner = THIS_MODULE, .name = "s3c2440-i2c", }, };s3c24xx_i2c_probe
static int s3c24xx_i2c_probe(struct platform_device *pdev) { struct s3c24xx_i2c *i2c = &s3c24xx_i2c; struct resource *res; int ret; /* find the clock and enable it */ i2c->dev = &pdev->dev; i2c->clk = clk_get(&pdev->dev, "i2c"); if (IS_ERR(i2c->clk)) { dev_err(&pdev->dev, "cannot get clock\n"); ret = -ENOENT; goto err_noclk; } dev_dbg(&pdev->dev, "clock source %p\n", i2c->clk); clk_enable(i2c->clk); /* map the registers */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) { dev_err(&pdev->dev, "cannot find IO resource\n"); ret = -ENOENT; goto err_clk; } i2c->ioarea = request_mem_region(res->start, (res->end-res->start)+1, pdev->name); if (i2c->ioarea == NULL) { dev_err(&pdev->dev, "cannot request IO\n"); ret = -ENXIO; goto err_clk; } i2c->regs = ioremap(res->start, (res->end-res->start)+1); if (i2c->regs == NULL) { dev_err(&pdev->dev, "cannot map IO\n"); ret = -ENXIO; goto err_ioarea; } dev_dbg(&pdev->dev, "registers %p (%p, %p)\n", i2c->regs, i2c->ioarea, res); /* setup info block for the i2c core */ i2c->adap.algo_data = i2c; i2c->adap.dev.parent = &pdev->dev; /* initialise the i2c controller */ ret = s3c24xx_i2c_init(i2c);//对2440控制器 io的进行初始化设置,很重要,和具体的硬件寄存器相关 if (ret != 0) goto err_iomap; /* find the IRQ for this unit (note, this relies on the init call to * ensure no current IRQs pending */ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (res == NULL) { dev_err(&pdev->dev, "cannot find IRQ\n"); ret = -ENOENT; goto err_iomap; } ret = request_irq(res->start, s3c24xx_i2c_irq, IRQF_DISABLED, pdev->name, i2c);//申请中断 if (ret != 0) { dev_err(&pdev->dev, "cannot claim IRQ\n"); goto err_iomap; } i2c->irq = res; dev_dbg(&pdev->dev, "irq resource %p (%lu)\n", res, (unsigned long)res->start); ret = i2c_add_adapter(&i2c->adap);//添加adapter,很重要,和其他数据结构联系 if (ret < 0) { dev_err(&pdev->dev, "failed to add bus to i2c core\n"); goto err_irq; } platform_set_drvdata(pdev, i2c); dev_info(&pdev->dev, "%s: S3C I2C adapter\n", i2c->adap.dev.bus_id); return 0; err_irq: free_irq(i2c->irq->start, i2c); err_iomap: iounmap(i2c->regs); err_ioarea: release_resource(i2c->ioarea); kfree(i2c->ioarea); err_clk: clk_disable(i2c->clk); clk_put(i2c->clk); err_noclk: return ret; }
I2C 总线驱动模块的卸载函数要完成的工作与加载函数相反(卸载就不对2440分析了)。
1.释放 I2C 适配器所使用的硬件资源,如释放 I/O 地址、中断号等。
2.通过 i2c_del_adapter()删除 i2c_adapter 的数据结构。
下面 所示为 I2C 适配器驱动的模块加载和卸载函数的模板。
static int _ _init i2c_adapter_xxx_init(void) { xxx_adpater_hw_init(); i2c_add_adapter(&xxx_adapter); } static void _ _exit i2c_adapter_xxx_exit(void) { xxx_adpater_hw_free(); i2c_del_adapter(&xxx_adapter); }上述代码中 xxx_adpater_hw_init()和 xxx_adpater_hw_free()函数的实现都与具体的CPU 和 I2C 设备硬件直接相关和上面所列出的2440代码 s3c24xx_i2c_init非常类似。
functionality()函数非常简单,用于返回algorithm所支持的通信协议,如I2C_FUNC_I2C、I2C_FUNC_10BIT_ADDR、I2C_FUNC_SMBUS_READ_BYTE、I2C_FUNC_SMBUS_WRITE_BYTE 等。
下面以2440为例看下实现:
定义通信方法:
static const struct i2c_algorithm s3c24xx_i2c_algorithm = { .master_xfer = s3c24xx_i2c_xfer, .functionality = s3c24xx_i2c_func, };s3c24xx_i2c_xfer的实现:
static int s3c24xx_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct s3c24xx_i2c *i2c = (struct s3c24xx_i2c *)adap->algo_data; int retry; int ret; for (retry = 0; retry < adap->retries; retry++) { ret = s3c24xx_i2c_doxfer(i2c, msgs, num);//传输函数 if (ret != -EAGAIN) return ret; dev_dbg(i2c->dev, "Retrying transmission (%d)\n", retry); udelay(100); } return -EREMOTEIO; }s3c24xx_i2c_doxfer的实现
static int s3c24xx_i2c_doxfer(struct s3c24xx_i2c *i2c, struct i2c_msg *msgs, int num) { unsigned long timeout; int ret; ret = s3c24xx_i2c_set_master(i2c);//获取i2c总线,先判断i2c是否处于busy状态 if (ret != 0) { dev_err(i2c->dev, "cannot get bus (error %d)\n", ret); ret = -EAGAIN; goto out; } spin_lock_irq(&i2c->lock); i2c->msg = msgs; i2c->msg_num = num; i2c->msg_ptr = 0; i2c->msg_idx = 0; i2c->state = STATE_START; //以下对中断,ack,读写就行相关的设置,是不是控制器设置好后就会自动的发送相关的信号? s3c24xx_i2c_enable_irq(i2c);//使能中断, s3c24xx_i2c_message_start(i2c, msgs);//相关的设置 spin_unlock_irq(&i2c->lock); timeout = wait_event_timeout(i2c->wait, i2c->msg_num == 0, HZ * 5); ret = i2c->msg_idx; /* having these next two as dev_err() makes life very * noisy when doing an i2cdetect */ if (timeout == 0) dev_dbg(i2c->dev, "timeout\n"); else if (ret != num) dev_dbg(i2c->dev, "incomplete xfer (%d)\n", ret); /* ensure the stop has been through the bus */ msleep(1); out: return ret; }s3c24xx_i2c_message_start
static void s3c24xx_i2c_message_start(struct s3c24xx_i2c *i2c, struct i2c_msg *msg) { unsigned int addr = (msg->addr & 0x7f) << 1; unsigned long stat; unsigned long iiccon; stat = 0; stat |= S3C2410_IICSTAT_TXRXEN;//读写 if (msg->flags & I2C_M_RD) {//判断是读还是写 stat |= S3C2410_IICSTAT_MASTER_RX; addr |= 1; } else stat |= S3C2410_IICSTAT_MASTER_TX; if (msg->flags & I2C_M_REV_DIR_ADDR) addr ^= 1; // todo - check for wether ack wanted or not s3c24xx_i2c_enable_ack(i2c);//使能ack iiccon = readl(i2c->regs + S3C2410_IICCON); writel(stat, i2c->regs + S3C2410_IICSTAT); dev_dbg(i2c->dev, "START: %08lx to IICSTAT, %02x to DS\n", stat, addr); writeb(addr, i2c->regs + S3C2410_IICDS);//发送地址 /* delay here to ensure the data byte has gotten onto the bus * before the transaction is started */ ndelay(i2c->tx_setup); dev_dbg(i2c->dev, "iiccon, %08lx\n", iiccon); writel(iiccon, i2c->regs + S3C2410_IICCON); stat |= S3C2410_IICSTAT_START; writel(stat, i2c->regs + S3C2410_IICSTAT); }
从上面的分析可以看到master_xfer并没有完成i2c的整个传输,只是发送一个起始条件和从设备地址,那么传输数据是如何完成的??
先给出i2c传输的模板:
master_xfer()函数在 I2C 适配器上完成传递给它的 i2c_msg 数组中的每个 I2C 消息,下面所示为 xxx 设备的 master_xfer()函数模板。
static int i2c_adapter_xxx_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,int num) { ... for (i = 0; i < num; i++) { i2c_adapter_xxx_start(); /*产生开始位*/ /*是读消息*/ if(msgs[i]->flags &I2C_M_RD) { i2c_adapter_xxx_setaddr((msg->addr << 1) | 1); /*发送从设备读地址*/ i2c_adapter_xxx_wait_ack(); /*获得从设备的 ack*/ i2c_adapter_xxx_readbytes(msgs[i]->buf, msgs[i]->len); /*读取msgs[i] ->len长的数据到 msgs[i]->buf*/ } else/*是写消息*/ { i2c_adapter_xxx_setaddr(msg->addr << 1); /*发送从设备写地址*/ i2c_adapter_xxx_wait_ack(); /*获得从设备的 ack*/ i2c_adapter_xxx_writebytes(msgs[i]->buf, msgs[i]->len); /*读取 msgs[i] ->len长的数据到 msgs[i]->buf*/ } } i2c_adapter_xxx_stop(); /*产生停止位*/ }上述代码实际上给出了一个 master_xfer()函数处理 I2C 消息数组的流程,对于数组中的每个消息,判断消息类型,若为 读消息,则赋从设备地址为 (msg->addr << 1)|1,否则为 msg->addr << 1。对每个消息产生一个开始位,紧接着传送从设备地址,然后开始数据的发送或接收,对最后的消息还需产生一个停止位。
i2c_adapter_xxx_writebytes()用于向从设备写入一串数据,这两个函数的内部也会涉及I2C 总线协议中的 ACK 应答。
下面看下S3C2410 I2C 总线驱动实例
S3C2410 I2C 控制器硬件描述
S3C2410 处理器内部集成了一个 I2C 控制器,通过 4 个寄存器就可方便地对其进行控制,这 4 个寄存器如下。
1.IICCON:I2C 控制寄存器。
2.IICSTAT:I2C 状态寄存器。
3.IICDS:I2C 收发数据移位寄存器。
4.IICADD:I2C 地址寄存器。
S3C2410 处理器内部集成的 I2C 控制器可支持主、从两种模式,我们主要使用其主模式。通过对 IICCON、IICDS 和 IICADD 寄存器的操作,可在 I2C 总线上产生开始位、停止位、数据和地址,而传输的状态则通过 IICSTAT 寄存器获取。
S3C2410 I2C 总线驱动总体分析
S3C2410 的 I2C 总线驱动设计主要要完成以下工作。
1.设计对应于 i2c_adapter_xxx_init()模板的 S3C2410 的模块加载函数和对应于i2c_ adapter_xxx_exit()函数模板的模块卸载函数。
2.设计对应于 i2c_adapter_xxx_xfer()模板的 S3C2410 适配器的通信方法函数。针 对 S3C2410 , functionality() 函 数 只 需 简 单 地 返 回 I2C_FUNC_I2C | I2C_FUNC_SMBUS_ EMUL | I2C_FUNC_PROTOCOL_MANGLING 表明其支持的功能。
这里分析内核中自带的 Ben Dooks 版本驱动,它同时支持 S3C2410 和 S3C2440。
下图给出了 S3C2410 驱动中的主要函数与 上面模板函数的对应关系,由于实现通信方法的方式不一样,模板的一个函数可能对应于 S3C2410 I2C 总线驱动的多个函数。
S3C2410 I2C 适配器驱动的模块加载与卸载
I2C 适配器驱动被作为一个单独的模块加载进内核,在模块的加载和卸载函数中,只需注册和注销一个 platform_driver 结构体,如代码清单如下所示:
static int __init i2c_adap_s3c_init(void) { int ret; ret = platform_driver_register(&s3c2410_i2c_driver); if (ret == 0) { ret = platform_driver_register(&s3c2440_i2c_driver); if (ret) platform_driver_unregister(&s3c2410_i2c_driver); } return ret; } static void __exit i2c_adap_s3c_exit(void) { platform_driver_unregister(&s3c2410_i2c_driver); platform_driver_unregister(&s3c2440_i2c_driver); }platform_driver 结构体包含了具体适配器的 probe()函数、remove()函数、resume()函数指针等信息,它需要被定义和赋值,如代码清单如下所示:
static struct platform_driver s3c2410_i2c_driver = { .probe = s3c24xx_i2c_probe, .remove = s3c24xx_i2c_remove, .resume = s3c24xx_i2c_resume, .driver = { .owner = THIS_MODULE, .name = "s3c2410-i2c", }, };当 通 过 Linux 内 核 源 代 码 /drivers/base/platform.c 文 件 中 定 义platform_driver_unregister()函数注册 platform_driver 结构体时,其中 probe 指针指向的s3c24xx_i2c_probe()函数将被调用, 以初始化适配器硬件,如代码清单如下所示。
static int s3c24xx_i2c_probe(struct platform_device *pdev) { struct s3c24xx_i2c *i2c = &s3c24xx_i2c; struct resource *res; int ret; /* find the clock and enable it */ i2c->dev = &pdev->dev; i2c->clk = clk_get(&pdev->dev, "i2c"); if (IS_ERR(i2c->clk)) { dev_err(&pdev->dev, "cannot get clock\n"); ret = -ENOENT; goto err_noclk; } dev_dbg(&pdev->dev, "clock source %p\n", i2c->clk); clk_enable(i2c->clk); /* map the registers */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) { dev_err(&pdev->dev, "cannot find IO resource\n"); ret = -ENOENT; goto err_clk; } i2c->ioarea = request_mem_region(res->start, (res->end-res->start)+1, pdev->name); if (i2c->ioarea == NULL) { dev_err(&pdev->dev, "cannot request IO\n"); ret = -ENXIO; goto err_clk; } i2c->regs = ioremap(res->start, (res->end-res->start)+1); if (i2c->regs == NULL) { dev_err(&pdev->dev, "cannot map IO\n"); ret = -ENXIO; goto err_ioarea; } dev_dbg(&pdev->dev, "registers %p (%p, %p)\n", i2c->regs, i2c->ioarea, res); /* setup info block for the i2c core */ i2c->adap.algo_data = i2c; i2c->adap.dev.parent = &pdev->dev; /* initialise the i2c controller */ ret = s3c24xx_i2c_init(i2c); if (ret != 0) goto err_iomap; /* find the IRQ for this unit (note, this relies on the init call to * ensure no current IRQs pending */ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (res == NULL) { dev_err(&pdev->dev, "cannot find IRQ\n"); ret = -ENOENT; goto err_iomap; } ret = request_irq(res->start, s3c24xx_i2c_irq, IRQF_DISABLED, pdev->name, i2c); if (ret != 0) { dev_err(&pdev->dev, "cannot claim IRQ\n"); goto err_iomap; } i2c->irq = res; dev_dbg(&pdev->dev, "irq resource %p (%lu)\n", res, (unsigned long)res->start); ret = i2c_add_adapter(&i2c->adap); if (ret < 0) { dev_err(&pdev->dev, "failed to add bus to i2c core\n"); goto err_irq; } platform_set_drvdata(pdev, i2c); dev_info(&pdev->dev, "%s: S3C I2C adapter\n", i2c->adap.dev.bus_id); return 0; err_irq: free_irq(i2c->irq->start, i2c); err_iomap: iounmap(i2c->regs); err_ioarea: release_resource(i2c->ioarea); kfree(i2c->ioarea); err_clk: clk_disable(i2c->clk); clk_put(i2c->clk); err_noclk: return ret; }上述代码中的主体工作是使能硬件并申请 I2C 适配器使用的 I/O 地址、在这些工作都完成无误后,通过 I2C 核心提供的 i2c_add_adapter()函数添加这个适配器 。 因 为 S3C2410 内 部 集 成 I2C 控 制 器 , 可 以 确 定 I2C 适 配 器 一 定 存 在 ,
static int s3c24xx_i2c_remove(struct platform_device *pdev) { struct s3c24xx_i2c *i2c = platform_get_drvdata(pdev); i2c_del_adapter(&i2c->adap); free_irq(i2c->irq->start, i2c); clk_disable(i2c->clk); clk_put(i2c->clk); iounmap(i2c->regs); release_resource(i2c->ioarea); kfree(i2c->ioarea); return 0; }上面代码用到的 s3c24xx_i2c 结构体进行适配器所有信息的封装,类似于私有信息结构体,下面所示的 s3c24xx_i2c 结构体的定义,以及驱动模块定义的一个s3c24xx_i2c 结构体全局实例。
struct s3c24xx_i2c { spinlock_t lock; wait_queue_head_t wait;//等待队列 struct i2c_msg *msg;//传输的信息结构体 unsigned int msg_num; unsigned int msg_idx; unsigned int msg_ptr; unsigned int tx_setup; enum s3c24xx_i2c_state state; void __iomem *regs; struct clk *clk; struct device *dev; struct resource *irq; struct resource *ioarea; struct i2c_adapter adap;//适配器 };
static struct s3c24xx_i2c s3c24xx_i2c = { .lock = __SPIN_LOCK_UNLOCKED(s3c24xx_i2c.lock), .wait = __WAIT_QUEUE_HEAD_INITIALIZER(s3c24xx_i2c.wait), .tx_setup = 50, .adap = { .name = "s3c2410-i2c", .owner = THIS_MODULE, .algo = &s3c24xx_i2c_algorithm, .retries = 2, .class = I2C_CLASS_HWMON, }, };S3C2410 I2C 总线通信方法
static const struct i2c_algorithm s3c24xx_i2c_algorithm = { .master_xfer = s3c24xx_i2c_xfer, .functionality = s3c24xx_i2c_func, };上述代码指定了 S3C2410 I2C 总线通信传输函数 s3c24xx_i2c_xfer(),这个函数非常关键,所有 I2C 总线上对设备的访问最终应该由它来完成,下面代码所 示 为 这 个 重 要 函 数 以 及 其 依 赖 的 s3c24xx_i2c_doxfer() 函 数 和s3c24xx_i2c_message_start()函数的源代码。
static int s3c24xx_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct s3c24xx_i2c *i2c = (struct s3c24xx_i2c *)adap->algo_data; int retry; int ret; for (retry = 0; retry < adap->retries; retry++) { ret = s3c24xx_i2c_doxfer(i2c, msgs, num);//重要传输函数 if (ret != -EAGAIN) return ret; dev_dbg(i2c->dev, "Retrying transmission (%d)\n", retry); udelay(100); } return -EREMOTEIO; }
static int s3c24xx_i2c_doxfer(struct s3c24xx_i2c *i2c, struct i2c_msg *msgs, int num) { unsigned long timeout; int ret; ret = s3c24xx_i2c_set_master(i2c); if (ret != 0) { dev_err(i2c->dev, "cannot get bus (error %d)\n", ret); ret = -EAGAIN; goto out; } spin_lock_irq(&i2c->lock); i2c->msg = msgs; i2c->msg_num = num; i2c->msg_ptr = 0; i2c->msg_idx = 0; i2c->state = STATE_START; s3c24xx_i2c_enable_irq(i2c); s3c24xx_i2c_message_start(i2c, msgs);//重要函数 spin_unlock_irq(&i2c->lock); timeout = wait_event_timeout(i2c->wait, i2c->msg_num == 0, HZ * 5); ret = i2c->msg_idx; /* having these next two as dev_err() makes life very * noisy when doing an i2cdetect */ if (timeout == 0) dev_dbg(i2c->dev, "timeout\n"); else if (ret != num) dev_dbg(i2c->dev, "incomplete xfer (%d)\n", ret); /* ensure the stop has been through the bus */ msleep(1);//确保停止位被发送 out: return ret; }
static void s3c24xx_i2c_message_start(struct s3c24xx_i2c *i2c, struct i2c_msg *msg) { unsigned int addr = (msg->addr & 0x7f) << 1; unsigned long stat; unsigned long iiccon; stat = 0; stat |= S3C2410_IICSTAT_TXRXEN; if (msg->flags & I2C_M_RD) { stat |= S3C2410_IICSTAT_MASTER_RX; addr |= 1; } else stat |= S3C2410_IICSTAT_MASTER_TX; if (msg->flags & I2C_M_REV_DIR_ADDR) addr ^= 1; // todo - check for wether ack wanted or not s3c24xx_i2c_enable_ack(i2c);/*如果要使能 ACK,则使能*/ iiccon = readl(i2c->regs + S3C2410_IICCON); writel(stat, i2c->regs + S3C2410_IICSTAT); dev_dbg(i2c->dev, "START: %08lx to IICSTAT, %02x to DS\n", stat, addr); writeb(addr, i2c->regs + S3C2410_IICDS); /* delay here to ensure the data byte has gotten onto the bus * before the transaction is started */ /*在发送新的开始位前延迟 i2c->tx_setup 位*/ ndelay(i2c->tx_setup); dev_dbg(i2c->dev, "iiccon, %08lx\n", iiccon); writel(iiccon, i2c->regs + S3C2410_IICCON); stat |= S3C2410_IICSTAT_START; writel(stat, i2c->regs + S3C2410_IICSTAT);//发送开始位 }s3c24xx_i2c_xfer()函数调用 s3c24xx_i2c_doxfer()函数传输 I2C 消息,for循环意味着最多可以重试 adap->retries 次。
static irqreturn_t s3c24xx_i2c_irq(int irqno, void *dev_id) { struct s3c24xx_i2c *i2c = dev_id; unsigned long status; unsigned long tmp; status = readl(i2c->regs + S3C2410_IICSTAT); if (status & S3C2410_IICSTAT_ARBITR) { // deal with arbitration loss dev_err(i2c->dev, "deal with arbitration loss\n"); } if (i2c->state == STATE_IDLE) { dev_dbg(i2c->dev, "IRQ: error i2c->state == IDLE\n"); tmp = readl(i2c->regs + S3C2410_IICCON); tmp &= ~S3C2410_IICCON_IRQPEND; writel(tmp, i2c->regs + S3C2410_IICCON); goto out; } /* pretty much this leaves us with the fact that we've * transmitted or received whatever byte we last sent */ i2s_s3c_irq_nextbyte(i2c, status);//重要的推进函数 out: return IRQ_HANDLED; }i2s_s3c_irq_nextbyte
static int i2s_s3c_irq_nextbyte(struct s3c24xx_i2c *i2c, unsigned long iicstat) { unsigned long tmp; unsigned char byte; int ret = 0; switch (i2c->state) { case STATE_IDLE://空闲状态 dev_err(i2c->dev, "%s: called in STATE_IDLE\n", __FUNCTION__); goto out; break; case STATE_STOP://传输停止 dev_err(i2c->dev, "%s: called in STATE_STOP\n", __FUNCTION__); s3c24xx_i2c_disable_irq(i2c);//关闭中断 goto out_ack; case STATE_START://开始传输 /* last thing we did was send a start condition on the * bus, or started a new i2c message */ if (iicstat & S3C2410_IICSTAT_LASTBIT && !(i2c->msg->flags & I2C_M_IGNORE_NAK)) { /* ack was not received... */ /* 没有收到 ACK */ dev_dbg(i2c->dev, "ack was not received\n"); s3c24xx_i2c_stop(i2c, -EREMOTEIO);//停止i2c传输 goto out_ack; } if (i2c->msg->flags & I2C_M_RD) //检查是读还是写 i2c->state = STATE_READ; else i2c->state = STATE_WRITE; /* terminate the transfer if there is nothing to do * (used by the i2c probe to find devices */ /* 仅一条消息,而且长度为 0(主要用于适配器探测),发送停止位*/ if (is_lastmsg(i2c) && i2c->msg->len == 0) { s3c24xx_i2c_stop(i2c, 0); goto out_ack; } if (i2c->state == STATE_READ) goto prepare_read; /* fall through to the write state, as we will need to * send a byte as well */ case STATE_WRITE:/* 进入写状态 */ /* we are writing data to the device... check for the * end of the message, and if so, work out what to do */ retry_write: if (!is_msgend(i2c)) { byte = i2c->msg->buf[i2c->msg_ptr++]; writeb(byte, i2c->regs + S3C2410_IICDS); /* delay after writing the byte to allow the * data setup time on the bus, as writing the * data to the register causes the first bit * to appear on SDA, and SCL will change as * soon as the interrupt is acknowledged */ ndelay(i2c->tx_setup); } else if (!is_lastmsg(i2c)) {/* 推进到下一条消息 */ /* we need to go to the next i2c message */ dev_dbg(i2c->dev, "WRITE: Next Message\n"); i2c->msg_ptr = 0; i2c->msg_idx ++; i2c->msg++; /* 检查是否要为该消息产生开始位 */ /* check to see if we need to do another message */ if (i2c->msg->flags & I2C_M_NOSTART) { if (i2c->msg->flags & I2C_M_RD) { /* cannot do this, the controller * forces us to send a new START * when we change direction */ s3c24xx_i2c_stop(i2c, -EINVAL); } goto retry_write; } else { /* 发送新的开始位 */ /* send the new start */ s3c24xx_i2c_message_start(i2c, i2c->msg); i2c->state = STATE_START; } } else { /* send stop */ s3c24xx_i2c_stop(i2c, 0); } break; case STATE_READ: /* we have a byte of data in the data register, do * something with it, and then work out wether we are * going to do any more read/write */ /* 有一个字节可读,看是否还有消息要处理*/ if (!(i2c->msg->flags & I2C_M_IGNORE_NAK) && !(is_msglast(i2c) && is_lastmsg(i2c))) { if (iicstat & S3C2410_IICSTAT_LASTBIT) { dev_dbg(i2c->dev, "READ: No Ack\n"); s3c24xx_i2c_stop(i2c, -ECONNREFUSED); goto out_ack; } } byte = readb(i2c->regs + S3C2410_IICDS); i2c->msg->buf[i2c->msg_ptr++] = byte; prepare_read: if (is_msglast(i2c)) { /* last byte of buffer */ if (is_lastmsg(i2c)) s3c24xx_i2c_disable_ack(i2c); } else if (is_msgend(i2c)) {/* 还有消息要处理吗? */ /* ok, we've read the entire buffer, see if there * is anything else we need to do */ if (is_lastmsg(i2c)) { /* last message, send stop and complete */ dev_dbg(i2c->dev, "READ: Send Stop\n"); s3c24xx_i2c_stop(i2c, 0); } else { /* go to the next transfer *//* 推进到下一条消息 */ dev_dbg(i2c->dev, "READ: Next Transfer\n"); i2c->msg_ptr = 0; i2c->msg_idx++; i2c->msg++; } } break; } /* acknowlegde the IRQ and get back on with the work */ out_ack:/* irq 清除 */ tmp = readl(i2c->regs + S3C2410_IICCON); tmp &= ~S3C2410_IICCON_IRQPEND; writel(tmp, i2c->regs + S3C2410_IICCON); out: return ret; }中断处理函数 s3c24xx_i2c_irq()主要通过调用 i2s_s3c_irq_nextbyte()函数进行传输工 作 的 进 一 步 推 进 。 i2s_s3c_irq_nextbyte() 函 数 通 过 switch(i2c->state) 语 句 分 成i2c->state 的不同状态进行处理,在每种状态下,先检查 i2c->state 的状态与硬件寄存器应该处于的状态是否一致,如果不一致,则证明有误,直接返回。当 I2C 处于读状态 STATE_READ 或写状态 STATE_WRITE 时,通过 is_lastmsg()函数判断是否传输的是最后一条 I2C 消息,如果是,则产生停止位,否则通过 i2c->msg_idx++、