- 自定义Retriever的实现方法
vaidfl
windowslinuxmicrosoftpython
技术背景介绍在许多大语言模型(LLM)应用中,检索器(Retriever)用于从外部数据源获取信息。检索器的任务是根据用户查询检索相关的文档,这些文档通常被格式化为提示,供LLM使用,从而生成适当的响应,例如,根据知识库回答用户问题。核心原理解析要实现自定义的检索器,需要继承BaseRetriever类,并实现以下方法:_get_relevant_documents:获取与查询相关的文档,必需实现
- 热点研究 | OpenAI 重磅发布 Agents SDK,人人都能手搓 Manus?
Ai野生菌
技术面php开发语言manusopenaiagent
3月12日,OpenAI正式发布了OpenAIAgentsSDK,这一重要发布不仅为开发者提供了强大的工具,更预示着AIAgent技术即将进入快速发展期。这些工具为开发者提供更强大功能,使代理能够独立执行复杂任务,如搜索网络、处理文件和自动化计算机操作。ResponsesAPI同步发布,为开发者提供了构建自定义AIAgent的能力,能够执行网络搜索、文件检索等任务。这套新工具和API旨在赋能开发者
- DeepSeek私有化部署搭建、本地知识库、可联网查询RAG检索增强生成
TonyH2002
DeepSeek本地部署私有化搭建联网查询
一、如何私有化部署DeepSeek如何部署DeepSeek,具体可参考以下内容:喂饭式教程-腾讯云轻量服务器部署DeepSeek:https://cloud.tencent.com/developer/article/2494571喂饭式教程-腾讯云HAI服务部署DeepSeek:https://cloud.tencent.com/developer/article/2495288喂饭式教程-腾讯
- 【数据库】MySQL的索引详解
此木|西贝
数据库数据库mysql
简介索引是一种用于快速查询和检索数据的数据结构,类似于书的目录。在几百页的书通过几页目录就可以精确定位到我们想看的章节优点和缺点优点正确的使用索引可以大大提高检索速度可以使用唯一索引保证数据在库中的唯一性使用聚合索引减少回表,降低IO次数缺点索引不宜创建的太多,否则增删改时不仅修改数据,还要修改大量的索引数据索引也会占用磁盘空间索引结构B树:多路平衡查找树,B树的所有节点都会存储key(索引)和d
- 【AI大模型】RAG如何让生成AI更智能?最新方法与优劣深度解析
健忘的派大星
人工智能语言模型aiAI大模型agiRAG程序员
前言近年来,人工智能技术突飞猛进,尤其是生成式AI,简直像是开了挂一样,各种惊艳的表现让人直呼“未来已来”。根据IDC的研究,生成式AI的市场规模在2022年已经达到了107亿美元,而到2026年,这个数字预计会飙升至326亿美元!不过,尽管生成式AI很强大,但它也并非完美无缺——比如生成内容的质量、准确性和可靠性,依然有提升的空间。这时候,检索增强生成(RAG)技术登场了!RAG的核心思路很简单
- 数据分析 SQL 面试全攻略,看这篇就够了!
程功学
数据分析sql面试
数据分析SQL面试八股文(含答案)已经打包好,看文末领取在数据分析领域,SQL技能堪称基石,也是众多企业在招聘数据分析岗位时重点考察的内容。今天,就为大家深度剖析数据分析SQL面试的要点,助力大家顺利通关。一、常见面试题型大揭秘(一)简单查询这类题目通常要求考生从单表中检索数据。例如,给定一个“员工信息表”,包含员工编号、姓名、年龄、部门等字段,题目可能是“查询年龄大于30岁的员工姓名和部门”。解
- 基于 Python 将 PDF 转 Markdown 并拆解为 JSON,支持自定义标题处理
drebander
pythonpdfjson
在日常工作中,我们经常需要将PDF文件转换为可编辑、可结构化的数据格式,比如Markdown和JSON。但实际操作中,自动化工具往往会出现标题识别不准确的问题,尤其是PDF转换过程中,缺乏明确的标题标识。这篇文章将教你如何使用Python将PDF转换为Markdown,并通过自定义规则精准识别标题,最终将内容按标题结构拆解为JSON,方便后续快速检索与使用。1.实现目标将PDF文件转换为Markd
- 使用Pinecone实现自查询检索器的实现步骤
vaidfl
python
##技术背景介绍Pinecone是一款功能强大的向量数据库,适用于处理复杂的检索需求。在本文中,我们将演示如何结合Pinecone向量存储使用SelfQueryRetriever实现自查询功能。为了更方便的了解原理,我们将以电影总结数据集为例进行展示。##核心原理解析自查询检索器(SelfQueryRetriever)的核心思想是通过提供文档的元数据和内容描述,结合语言模型生成查询条件来完成数据检
- 使用 DingoDB 创建自查询检索器的实战演示
fgayif
python
DingoDB深入解析与实战演示DingoDB是一种分布式多模向量数据库,它结合了数据湖和向量数据库的特点,能够存储任何类型和大小的数据(如Key-Value、PDF、音频、视频等)。它具有实时低延迟处理能力,可以快速获取洞察并响应,还能高效进行即时分析和处理多模数据。在本教程中,我们将演示如何使用DingoDB向量存储来创建一个自查询检索器。技术背景介绍DingoDB的设计结合了数据湖的灵活性和
- 使用 DashVector 进行高效的矢量检索和自查询检索器演示
bavDHAUO
python
在当代AI应用中,向量数据的管理和检索是至关重要的部分。DashVector是一个完全托管的向量数据库服务,提供了对高维稠密和稀疏向量的支持,允许实时插入和过滤搜索。这个服务基于DAMOAcademy自研的高效向量引擎Proxima核心构建,具备云原生和横向扩展能力,能够快速适应不同应用需求。在本篇文章中,我们将演示如何使用DashVector和SelfQueryRetriever来高效地进行矢量
- 【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破
寻道AI小兵
AI大模型前沿技术追踪人工智能语言模型AIGC
系列篇章No.文章1【AI大模型前沿】深度剖析瑞智病理大模型RuiPath:如何革新癌症病理诊断技术2【AI大模型前沿】清华大学CLAMP-3:多模态技术引领音乐检索新潮流3【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破目录系列篇章前言一、项目概述二、技术原理(一)异构低秩适应(H-LoRA)(二)分层视觉感知(HVP)(三)三阶段学习策略(TLS)三、
- 人工智能的未来:从基础到前沿的探索与展望
小二爱编程·
人工智能aiAI编程AI写作AI作画
1.人工智能简介内容概述:人工智能(AI)是指模拟和执行人类智能任务的技术。随着计算能力和数据量的增加,AI在各个领域取得了显著进展,从自动化的基本任务到解决复杂的实际问题,人工智能正渗透到我们生活的各个方面。2.人工智能的种类与发展内容概述:AI的种类可以按智能的复杂度分为三大类:弱人工智能(NarrowAI):目前大多数应用都属于弱AI,如语音助手、自动驾驶等。它们专注于特定任务,并且无法扩展
- YashanDB表的紧急恢复
数据库
#表的紧急恢复对于无法通过闪回进行快速恢复的表,可使用YashanDB的物理备份恢复功能和导入、导出功能进行紧急恢复。操作流程如下:备份现有数据库的所有数据文件,以防止在此过程的剩余步骤中出错。将数据库备份还原到备库环境。至少应恢复以下内容:SYSTEM和SYSAUX表空间包含还原或回退段的表空间包含要检索的数据的独立表空间使用还原的备份控制文件对该备份执行不完全恢复,直到删除表之前。从数据库的临
- 探索AI知识库的无限潜力:定义、应用与未来展望
知识库知识库管理知识库软件
一、AI知识库的定义AI知识库,作为人工智能技术与传统知识库概念的融合,是指利用人工智能算法和技术构建、管理和维护的信息存储系统。它不仅包含了大量的结构化、半结构化和非结构化数据,还具备智能检索、推理分析、自我学习和优化等高级功能。AI知识库通过模拟人类的认知过程,实现了对知识的有效组织和高效利用,为各种应用场景提供了强大的支持。二、AI知识库的应用1.客户服务与支持在电子商务领域,AI知识库的应
- Dify知识库构建流程及示例
cqbelt
ai笔记AI应用
总体流程1.数据预处理清洗:去除噪声、特殊字符、标准化格式。分词/标记化:拆分文本为单词或子词单元(如使用Tokenizer)。元数据关联:附加来源、时间戳等信息,支持多维度检索。2.文本分块固定长度分块:按字符或Token数切分,简单高效。语义分块:基于句子边界或主题分割(如NLP模型识别段落主旨)。重叠策略:相邻块间部分重叠,避免上下文断裂。3.向量化(Embedding)嵌入模型:调用预训练
- 深入解析BM25:LangChain中的高效检索算法
AI Agent首席体验官
langchain算法
1.BM25算法BM25是信息检索领域中一个重要的排序算法,它用来计算查询与文档之间的相关性。让我们通过一个图书馆的例子来理解:想象你是一个图书馆管理员,有人来问你:“我想找关于太空探索和火星的书”。传统TF-IDF方法:就像你先数一数每本书中"太空探索"和"火星"这些词出现的次数,然后优先推荐这些词出现最多的书。但这有个问题:如果一本1000页的书和一本100页的书都提到"火星"10次,按理说短
- 从经典到现代:BM25在LangChain中的应用与优势
AI Agent首席体验官
langchain
1.BM25算法BM25是信息检索领域中一个重要的排序算法,它用来计算查询与文档之间的相关性。让我们通过一个图书馆的例子来理解:想象你是一个图书馆管理员,有人来问你:“我想找关于太空探索和火星的书”。传统TF-IDF方法:就像你先数一数每本书中"太空探索"和"火星"这些词出现的次数,然后优先推荐这些词出现最多的书。但这有个问题:如果一本1000页的书和一本100页的书都提到"火星"10次,按理说短
- Dyn-VQA:含1452动态问题的视觉问答数据集,需灵活提供知识检索方案,查询、工具与检索时间皆可变。
数据集
2024-11-05,由阿里巴巴集团创建Dyn-VQA数据集,它包含三种类型的“动态”问题,需要复杂的知识检索策略,这些问题的查询、工具和时间都是可变的。这个数据集的创建对于推动mRAG研究和解决现有VQA数据集无法充分反映启发式mRAGs在获取复杂知识方面的刚性问题具有重要意义。数据集地址:Dyn-VQA|多模态检索数据集|自然语言处理数据集一、研究背景:在多模态大型语言模型(MLLMs)中,解
- 一文带大家了解RARR(Retrieve-Read-Rerank) 和 RAG(Retrieval-Augmented Generation)的区别
测试开发Kevin
AI相关人工智能ai
RARR(Retrieve-Read-Rerank)和RAG(Retrieval-AugmentedGeneration)是两种不同的检索增强生成技术,核心差异在于流程设计、优化目标及适用场景。以下从多个维度对比两者的区别:1.流程架构与核心步骤RAG(检索增强生成)流程:检索(Retrieve):从外部知识库中检索与查询相关的文档或文本片段。生成(Generate):将检索到的内容与原始查询拼接
- 使用 DeepSeek-R1 为 RAG 运行本地 Gradio 应用程序
呱牛 do IT
人工智能deepseek
让我们使用Gradio构建一个简单的演示应用程序,以使用DeepSeek-R1查询和分析文档。第1步:先决条件在深入研究实现之前,我们确保已安装以下工具和库:Python3.8+Python3.8+版Langchain:用于构建由大型语言模型()LLMs提供支持的应用程序的框架,支持轻松检索、推理和工具集成Chromadb:一个高性能的向量数据库,专为高效的相似性搜索和嵌入存储而设计。Gradio
- 文件及其应用场景
烈焰猩猩
python
文件及其应用场景一,文件的定义文件的概念内存中存放的数据在计算机关机后就会消失.要长久保存数据,就要使用硬盘、光盘、U盘等设备.为了便于数据的管理和检索,引入了"文件"的概念.一篇文章、一段视频、一个可执行程序,都可以被保存为一个文件,并赋予一个文件名。操作系统以文件为单位管理磁盘中的数据。一般来说,文件可分为文本文件、视频文件、音频文件、图像文件、可执行文件等多种类别.文件操作的作用在日常操作中
- OctoTools:一个具有复杂推理可扩展工具的智体框架
三谷秋水
智能体大模型机器学习人工智能语言模型机器学习
25年2月来自斯坦福大学的论文“OctoTools:AnAgenticFrameworkwithExtensibleToolsforComplexReasoning”。解决复杂的推理任务可能涉及视觉理解、域知识检索、数值计算和多步骤推理。现有方法使用外部工具增强大语言模型(LLM),但仅限于专业领域、有限的工具类型或需要额外的训练数据。本文的OctoTools,是一个无需训练、用户友好且易于扩展的
- [利用RAG和Elasticsearch打造智能检索系统:详解实现过程]
afTFODguAKBF
elasticsearchjenkins大数据python
引言在信息爆炸的时代,如何高效地从海量数据中提取有用信息成为了一个重要课题。通过结合RAG(Retrieval-AugmentedGeneration)和Elasticsearch,一种强大的信息检索和生成系统可以被实现。本文将详细介绍如何利用RAG和Elasticsearch打造一个智能检索系统。主要内容1.环境设置首先,我们需要设置必要的环境变量来访问Elasticsearch实例和OpenA
- 第七章Solr:企业级搜索应用
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
第七章Solr:企业级搜索应用1.背景介绍1.1搜索引擎的重要性在当今信息时代,数据量呈指数级增长,海量数据中蕴含着极其宝贵的信息和知识。然而,如何快速、准确地从大数据中检索出所需的信息,一直是企业和组织面临的巨大挑战。传统的数据库查询方式已经无法满足现代搜索需求,因此高效的搜索引擎应运而生。1.2什么是SolrApacheSolr是一个高性能、可扩展、云就绪的企业级搜索平台,由Apache软件基
- C++中map和set的详解
黑猫Teng
c++算法开发语言
C++中map和set的介绍与使用在C++编程中,map和set是标准模板库(STL)中两种非常重要的关联容器。它们基于平衡二叉搜索树(通常是红黑树)的数据结构来实现,提供了高效的数据存储和检索功能。本文将详细介绍map和set的特点、用法以及一些常见的操作示例。一、map的介绍与使用1.map的基本概念map是一个键值对容器,其中每个键都是唯一的,且按照升序排序。map的内部结构是红黑树,这使得
- 数据库的基本概念
咖啡の猫
数据库
在当今数字化的世界中,数据已成为企业和组织最宝贵的资产之一。有效地管理和利用这些数据对于决策制定、服务优化和业务增长至关重要。数据库作为存储、管理及检索数据的核心工具,在现代信息系统中扮演着至关重要的角色。本文将介绍数据库的一些基本概念,包括其定义、类型、结构以及一些基本操作。一、什么是数据库?数据库(Database)是指按照一定的结构来组织、存储和管理数据的仓库。它允许用户方便地进行数据的添加
- RAG 在多模态数据处理中的应用探索:结合图像与文本生成
hy098543
AIGC
目录引言多模态数据处理的挑战与需求数据异质性与融合难题多样化应用场景的需求RAG在图像与文本生成中的应用架构图像检索与文本生成协同跨模态特征融合与生成关键技术与实现细节图像特征提取与表示文本检索与语义理解跨模态生成模型训练应用案例分析智能设计辅助医疗影像报告生成结论引言随着信息技术的飞速发展,数据呈现出多模态的特性,即包含文本、图像、音频、视频等多种形式。在自然语言处理(NLP)和计算机视觉(CV
- MM-RAIT:多模态检索增强生成(RAG)的认知革命
花生糖@
AIGC学习资料库人工智能深度学习机器学习RAGAI知识库
多模态检索增强生成(RAG)领域迎来了一项里程碑式的突破——MM-RAIT框架通过“评估-训练”双轮驱动,显著提升了主流视觉语言模型的RAG性能,增幅达27%至34%。这项技术不仅解决了多模态AI的认知断层问题,还首次赋予机器类似人类的知识处理能力,即“查资料-思逻辑-答精准”的能力。技术双引擎:从能力测绘到认知进化M2RAG:多模态能力的CT扫描仪M2RAG引入了首创的四维评估体系,覆盖图像描述
- RAG问答系统:检索增强生成框架
ZhangJiQun&MXP
2021论文教学大模型语言模型
目录RAG(Retrieval-AugmentedGeneration)框架一、RAG框架的定义二、RAG框架的工作原理三、RAG框架的举例说明四、RAG框架的优势RAG问答系统二、工作流程三、优势四、应用场景RAG(Retrieval-AugmentedGeneration)框架即检索增强生成框架,是一种结合了信息检索技术与语言生成模型的人工智能技术。以下是对RAG框架的详细解释及举例说明:一、
- 架构师之路--达梦数据库操作符含义详解
shine_du
数据库达梦数据库
达梦数据库执行计划操作符含义详解在达梦数据库中,执行计划是数据库引擎用于执行SQL查询的详细步骤蓝图。执行计划中的操作符描述了数据库如何从表和索引中检索、过滤、排序以及组合数据,以生成最终的查询结果。理解这些操作符的含义对于优化查询性能、分析查询行为以及深入理解数据库的工作机制至关重要。一、表扫描操作符全表扫描(TABLEACCESSFULL)含义:这是最基本的表扫描方式,当执行计划中出现此操作符
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理