A Lightened CNN for Deep Face Representation

一个小巧的人脸识别CNN网络

https://github.com/AlfredXiangWu/face_verification_experiment

当前基于CNN网络的人脸识别的文献可以说是满天飞,虽然效果不错,但是计算量大是一个问题。导致其难以用于嵌入式设备或手机里。当前关于人脸识别的CNN网络问题如下:1)很深的CNN网络导致一个大的模型,提取特征的时间较长。2)基于 ReLU 激活函数学习到的特征往往是 high dimensional and sparse,所以采用 Joint Bayesian [19] or metric learning [12]得到一个 low-dimensional and compact representation。所以我们这里希望使用一个小的CNN网络,直接得到一个可以快速计算的 low-dimensional representation特征。

The contributions are summarized as follows:
1)一个新的激活函数用于CNN网络的卷积层, 它可以学习到 compact 特征
Max-Feature-Map (MFM) activation function
2)设计了两个小网络,One contains 4 convolution layers, 4 max-pooling layers and 2 fully connected layers and totally contains about 4M parameters, the other reduces the kernel size of convolution layers and employs Network in Network (NIN) [11] between convolution layers.
3)提出的网络,效果不错,时间短。 the CPU time of extracting face feature vector based on CNN is nearly 67ms

3 Architecture
3.1. Max-Feature-Map Activation Function
A Lightened CNN for Deep Face Representation_第1张图片
Max-Feature-Map 激活函数 受 maxout networks[4]启发,定义如下:

激活函数的梯度如下
A Lightened CNN for Deep Face Representation_第2张图片

3.2. The Lightened CNN Framework

结果:
A Lightened CNN for Deep Face Representation_第3张图片

A Lightened CNN for Deep Face Representation_第4张图片

A Lightened CNN for Deep Face Representation_第5张图片

你可能感兴趣的:(A Lightened CNN for Deep Face Representation)