- 【深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数
阿_旭
AI应用软件开发实战深度学习实战深度学习python行人检测行人追踪过线计数
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 【计算机视觉前沿研究 热点 顶会】ECCV 2024中目标检测有关的论文
平安顺遂事事如意
顶刊顶会论文合集计算机视觉目标检测人工智能3d目标跟踪
整值训练和尖峰驱动推理脉冲神经网络用于高性能和节能的目标检测与人工神经网络(ANN)相比,脑激励的脉冲神经网络(SNN)具有生物合理性和低功耗的优势。由于SNN的性能较差,目前的应用仅限于简单的分类任务。在这项工作中,我们专注于弥合人工神经网络和神经网络在目标检测方面的性能差距。我们的设计围绕着网络架构和尖峰神经元。当行人检测遇到多模态学习时:通才模型和基准数据集近年来,利用不同传感器模态(如RG
- 【CV论文精读】Adaptive Fusion of Multi-Scale YOLO for Pedestrian Detection基于多尺度自适应融合YOLO的行人检测
量子-Alex
CV知识学习和论文阅读YOLO计算机视觉人工智能
AdaptiveFusionofMulti-ScaleYOLOforPedestrianDetection0.论文摘要和作者信息摘要虽然行人检测技术在不断改进,但由于不同规模的行人和遮挡行人模式的不确定性和多样性,行人检测仍然具有挑战性。本研究遵循单次目标检测的通用框架,提出了一种分而治之的方法来解决上述问题。该模型引入了一个分割函数,可以将一幅图像中没有重叠的行人分割成两个子图像。通过使用网络架
- HOG特征
ce0b74704937
HOG特征是在文章《HistogramsofOrientedGradientsforHumanDetection》中提出,看文章标题可知,该文章是为了行人检测提出的,不过后来也用于其它方向,比如特征点检测等。该文中行人检测大概分为以下几步:输入图像(行人的图像)采用Gamma矫正法对输入图像进行颜色空间的标准化;目的是调节图像的对比度,降低图像局部的阴影和光照所造成的影响,同时可以抑制噪声。(原文
- 【CV论文精读】Pedestrian Detection Based on YOLO Network Model 基于YOLO的行人检测
量子-Alex
CV知识学习和论文阅读YOLO深度学习计算机视觉
【CV论文精读】PedestrianDetectionBasedonYOLONetworkModel0.论文摘要和作者信息摘要——经过深度网络后,会有一些行人信息的丢失,会造成梯度的消失,造成行人检测不准确。本文改进了YOLO算法的网络结构,提出了一种新的网络结构YOLO-R。首先,在原有YOLO网络的基础上增加了三个直通层。直通层由路由层和重组层组成。其作用是将浅层行人特征连接到深层行人特征,并
- 跨模态行人重识别综述 - 计算机视觉
小小猿D
笔记深度学习
跨模态行人重识别综述-计算机视觉0引言近年来,随着智能监控领域的不断发展,单纯凭借传统的人力已经很难在对复杂的监控场景做出完善详尽的处理。作为一项在大型非重叠视角多摄像机网络获取到的海量视频画面序列里找到目标行人的任务,行人重识别(PersonRe-Identification)可以被看作是多摄像头的行人检索问题。它建立在行人检测的基础之上,捕捉获取同一目标个体在不同非重叠摄像头中分布位置信息,推
- PaddleDetection学习2——使用Paddle-Lite在 Android 上实现行人检测
waf13916
paddleandroid
使用Paddle-Lite在Android上实现行人检测1.环境准备2.准备模型2.1下载模型2.2模型优化3.部署模型3.1目标检测C++代码Pipeline.hPipeline.cpppreprocess_op.hpreprocess_op.cc3.2修改配置文件3.4部署模型到移动端1.环境准备参考前一篇
- YOLOV5s行人识别改进 引入CoT模块及SIOU损失函数
deleteeee
YOLO人工智能计算机视觉神经网络python目标检测视觉检测
1.项目背景及意义近年来,深度学习算法不断取得了突破性进展,这也推动了人工智能技术的不断进步。机器视觉作为其中的重要一环,在不同领域也焕发出了强烈的生机。行人目标检测是机器视觉的一项重要课题,早就已经引起了国内外学者广泛的研究。在现实生活中,行人检测在车站、商场等场所的人流量检测、汽车的自动驾驶技术、智能交通、健身房辅助教学、电影拍摄中动作捕捉等多种场景中被广泛应用。然而,行人检测通常伴随着遮挡,
- 计算机设计大赛 交通目标检测-行人车辆检测流量计数 - 计算机设计大赛
iuerfee
python
文章目录0前言1\.目标检测概况1.1什么是目标检测?1.2发展阶段2\.行人检测2.1行人检测简介2.2行人检测技术难点2.3行人检测实现效果2.4关键代码-训练过程最后0前言优质竞赛项目系列,今天要分享的是毕业设计交通目标检测-行人车辆检测流量计数该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分
- YOLOV5单目测距+车辆检测+车道线检测+行人检测(教程-代码)
毕设阿力
YOLO目标跟踪人工智能目标检测
YOLOv5是一种高效的目标检测算法,结合其在单目测距、车辆检测、车道线检测和行人检测等领域的应用,可以实现多个重要任务的精确识别和定位。首先,YOLOv5可以用于单目测距。通过分析图像中的目标位置和尺寸信息,结合相机参数和几何关系,可以推断出目标与相机之间的距离。这对于智能驾驶、机器人导航等领域至关重要,可以帮助车辆或机器人感知周围环境的远近,并做出相应的决策。其次,YOLOv5可以用于车辆检测
- 大创项目推荐 目标检测-行人车辆检测流量计数
laafeer
python
文章目录前言1\.目标检测概况1.1什么是目标检测?1.2发展阶段2\.行人检测2.1行人检测简介2.2行人检测技术难点2.3行人检测实现效果2.4关键代码-训练过程最后前言优质竞赛项目系列,今天要分享的是行人车辆目标检测计数系统该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1.目
- 使用飞浆训练目标检测模型
无忧秘书智脑
深度学习机器学习人工智能
参考链接:PP-PicoDet算法训练行人检测模型-CSDN博客文章浏览阅读306次。PP-PicoDet模型特点:方案选择PP-PicoDet轻量化模型,主要看中PP-PicoDet体积小、速度快、精度较高的优势,非常适合本项目的部署环境和性能要求。同时,飞桨提供的预训练模型也可以最大程度上提升模型的收敛速度和精度。https://blog.csdn.net/qq_45437316/articl
- LNTON人形检测、行人检测工具,支持图片、RTSP实时流、mp4文件中的行人或者人形检测,实用工具,亲测可用!
xiejiashu
视频人工智能行人检测人形检测人物监测检测人的算法羚通算法
简介LNTON_PID是一个行人检测工具,能够对图像、视频、文件夹中的多个文件或RTSP实时流进行行人检测,并支持自定义输出结果和行人区域位置的保存。该工具提供了灵活的参数配置选项以适应各种应用场景。快速开始-命令行参数格式(Linux/Unix环境)./pid_tools_gensamplesINPUT_PATHOUT_RESULT_DIR[DEFAULT:results]OUT_PATCH_D
- 智慧工地下烟火检测报警系统 建筑工地火灾监控系统
豌豆云
烟火自动识别预警和监管系统
智慧工地下烟火检测报警系统建筑工地火灾监控系统基于智能识别的人员密集场所安防预警系统或许能够帮到你。该系统利用监控系统结合模式识别,对现场视频数据进行深度挖掘,突破基于复杂背景下的烟火识别、动态场景下非配合人脸识别以及基于行人检测的越界识别等关键技术。烟感防灾报警系统,在施工现场加工区、材料堆放区、易发生火灾隐患区域安装烟感探测器,监测现场烟雾浓度。探测器内置芯片可实时上传监测数据至“智慧工地监管
- 目标检测数据集 - 人脸检测数据集下载「包含VOC、COCO、YOLO三种格式」
极智视界
AI训练数据集工作室目标检测YOLO人脸检测人脸检测数据集深度学习人工智能数据集
数据集介绍:行人检测数据集,真实场景高质量图片数据,涉及场景丰富,比如校园行人、街景行人、道路行人、遮挡行人、严重遮挡行人数据;适用实际项目应用:公共场所监控场景下行人检测项目,以及作为监控场景通用行人检测数据集场景数据的补充;标注说明:采用labelimg标注软件进行标注,标注质量高,提供VOC(xml)、COCO(json)、YOLO(txt)三种常见目标检测数据集格式,可以直接用于如YOLO
- 目标检测数据集 - 行人检测数据集下载「包含VOC、COCO、YOLO三种格式」
极智视界
AI训练数据集工作室目标检测YOLO行人检测行人检测数据集AI训练数据集深度学习labelimg
数据集介绍:行人检测数据集,真实场景高质量图片数据,涉及场景丰富,比如校园行人、街景行人、道路行人、遮挡行人、严重遮挡行人数据;适用实际项目应用:公共场所监控场景下行人检测项目,以及作为监控场景通用行人检测数据集场景数据的补充;标注说明:采用labelimg标注软件进行标注,标注质量高,提供VOC(xml)、COCO(json)、YOLO(txt)三种常见目标检测数据集格式,可以直接用于如YOLO
- 基于YOLOv5的行人检测系统
TechMasterPlus
深度学习#目标检测游戏音视频深度学习人工智能
若需要完整工程源代码,请私信作者目标检测在计算机视觉领域中的重要性,特别是在人群流量监测方面的应用。其中,YOLO(YouOnlyLookOnce)系列算法在目标检测领域取得了显著的进展,从YOLO到YOLOv5的发展历程表明其在算法性能上的不断优化。文中提到了基于YOLOv5设计的人口密度检测系统,该系统通过深度学习算法对人群进行检测和计数,主要应用于商场、路口等需要控制人流的场所。系统通过YO
- 无人驾驶卡尔曼滤波
meteor,across T sky
Apollo机器学习人工智能
无人驾驶卡尔曼滤波(行人检测)xk=axk−1+wkx_k=ax_{k-1}+w_kxk=axk−1+wkwkw_kwk:过程噪声状态估计估计飞行器状态(高度)xk=zk−vkx_k=z_k-v_kxk=zk−vk卡尔曼滤波通过同时考虑上一状态值和当前的测量值来获得对当前状态值的估计,对状态xxx的估计:x^\hat{x}x^x^k=x^k−1+gk(zk−x^k−1)\hat{x}_k=\hat
- 大创项目推荐 深度学习实现行人重识别 - python opencv yolo Reid
laafeer
python
文章目录0前言1课题背景2效果展示3行人检测4行人重识别5其他工具6最后0前言优质竞赛项目系列,今天要分享的是**基于深度学习的行人重识别算法研究与实现**该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:5分更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate
- 目标检测数据集 - 夜间行人检测数据集下载「包含VOC、COCO、YOLO三种格式」
极智视界
AI训练数据集工作室目标检测YOLO人工智能夜间行人检测低光行人检测遮挡行人检测行人检测
数据集介绍:夜间、低光行人检测数据集,真实场景高质量图片数据,涉及场景丰富,比如夜间街景行人、夜间道路行人、夜间遮挡行人、夜间严重遮挡行人数据;适用实际项目应用:公共场所监控场景下夜间行人检测项目,以及作为监控场景通用行人检测数据集夜间场景数据的补充;标注说明:采用labelimg标注软件进行标注,标注质量高,提供VOC(xml)、COCO(json)、YOLO(txt)三种常见目标检测数据集格式
- 基于yolov2深度学习网络的车辆行人检测算法matlab仿真
简简单单做算法
MATLAB算法开发#深度学习YOLO深度学习人工智能yolov2车辆行人检测
目录1.算法运行效果图预览2.算法运行软件版本3.部分核心程序4.算法理论概述5.算法完整程序工程1.算法运行效果图预览2.算法运行软件版本MATLAB2022a3.部分核心程序..........................................................loadyolov2.mat%加载训练好的目标检测器img_size=[224,224];imgPath=
- C# OpenCvSharp DNN FreeYOLO 密集行人检测
天天代码码天天
C#人工智能实践dnn人工智能神经网络YOLO目标检测计算机视觉c#
目录效果模型信息项目代码下载C#OpenCvSharpDNNFreeYOLO密集行人检测效果模型信息Inputs-------------------------name:inputtensor:Float[1,3,192,320]---------------------------------------------------------------Outputs--------------
- 一些想法:关于行人检测与重识别
baidu_huihui
人工智能计算机视觉
本文主要是介绍我们录用于ECCV'18的一个工作:PersonSearchviaAMask-guidedTwo-streamCNNModel.这篇文章着眼于PersonSearch这个任务,即同时考虑行人检测(PedestrianDetection)与行人重识别(PersonRe-identification),简单探讨了一下行人检测与行人重识别这两个子任务之间的关联性,并尝试利用全景图像中的背景
- 智能交通技术与数据集大观:揭秘趋动云的无尽能量,引领AI发展的GPU算力及相关资源
virtaitech
人工智能gpu算力
智能交通是一种先进的交通系统,其核心目标在于通过实时数据的采集、分析以及智能决策,全面提升城市交通的效率、安全性和便捷性。该系统涵盖多项关键技术,包括行人检测、车辆检测、智能交通信号控制、智能导航和路径规划、以及安全监控等。行人检测:智能交通系统利用计算机视觉技术,通过摄像头、激光雷达等传感器对行人进行实时监测和识别。深度学习算法在处理多姿态和遮挡等复杂场景时,能够高效地检测行人的存在、位置和运动
- YOLO算法改进7【中阶改进篇】:主干网络C3替换为轻量化网络MobileNetV3
梦在黎明破晓时啊
YOLOV5中阶改进篇YOLO
解决问题:YOLOv5主干特征提取网络采用C3结构,带来较大的参数量,检测速度较慢,应用受限,在某些真实的应用场景如移动或者嵌入式设备,如此大而复杂的模型时难以被应用的。首先是模型过于庞大,面临着内存不足的问题,其次这些场景要求低延迟,或者说响应速度要快,想象一下自动驾驶汽车的行人检测系统如果速度很慢会发生什么可怕的事情。所以,研究小而高效的CNN模型在这些场景至关重要,至少目前是这样,尽管未来硬
- Deep learning-based small object detection: A survey(2023)
怎么全是重名
论文笔记深度学习目标检测人工智能
文章目录AbstractIntroductionContributionGenericSODalgorithms提高输入特征的分辨率(MostImportant)Methods尺度感知训练Methods融合上下文信息Methods数据增强Methods其他策略Methods关键的SOD任务小人脸检测Methods小型行人检测Methods航拍图像中的SODMethodsEvaluationofSO
- 36从传统算法到深度学习:目标检测入门实战 --行人检测
Jachin111
行人检测基本流程在实验1到实验3中我们分别学习了滑动窗口、图像金字塔、方向梯度直方图。本节实验我们将结合这些方法来构建一个传统的行人检测算法。简单来说行人检测就是在提供的图像中,我们想要计算机分辨出哪些是人并且用矩形框标记出人出现在图片中的哪些位置。下图左上角图片中有一个人,如果我们想要用传统的目标检测方法检测到这个人的话,一般分为下面几个步骤。使用图像金字塔将图片按一定缩放比例生成不同尺寸图片(
- 深度学习模型压缩与加速:深度压缩技术
RRRRRoyal
深度学习人工智能
深度学习模型压缩与加速:深度压缩技术引言深度学习已广泛应用于移动应用和实时检测任务,例如在自动驾驶车辆中的行人检测。在这些应用中,对于推理速度和模型大小有着极高的要求。深度压缩(DeepCompression)技术旨在减小深度学习模型的大小并加速模型推理,特别适用于对延迟敏感的应用场景。下面我们将详细介绍深度压缩技术及其在实际硬件上的性能。模型压缩与量化深度压缩技术通过权重剪枝、量化等方法来减少模
- 分类(四)—— 支持向量机
shi_jiaye
python机器学习与数据挖掘机器学习人工智能python
主要内容分类概述决策树归纳K近邻算法支持向量机朴素贝叶斯分类模型评估与选择组合分类小结四、支持向量机支持向量机(SupportVetorMachine,SVM)由Vapnik等人于1995年首先提出,在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并推广到人脸识别、行人检测和文本分类等其他机器学习问题中。SVM建立在统计学习理论的VC维理论和结构风险最小原理基础上,根据有限的样本信息在模
- 基于YOLOv8深度学习的高精度车辆行人检测与计数系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
阿_旭
深度学习实战AI应用软件开发实战计算机视觉YOLO深度学习python车辆行人检测目标检测
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs