动态设置线程数量的例子

 
   const int MIN_ITERATOR_NUM = 4;
   int ncore = omp_get_num_procs(); //获取执行核的数量
   int max_tn = n / MIN_ITERATOR_NUM;
   int tn = max_tn > 2*ncore ? 2*ncore : max_tn; //tn表示要设置的线程数量
#pragma omp parallel for if( tn > 1) num_threads(tn)
     for ( i = 0; i < n; i++ )
     {
         printf("Thread Id = %ld/n", omp_get_thread_num());
         //Do some work here
     }


在上面代码中,根据每个线程运行的循环次数不低于4次,先计算出最大可能的线程数max_tn,然后计算需要的线程数量tn,tn的值等于max_tn和2倍CPU核数中的较小值。
然后在parallel for构造中使用if子句来判断tn是否大于1,大于1时使用单个线程,否则使用tn个线程,,这样就使得设置的线程数量满足了需求中的条件。
比如在一个双核CPU上,n=64,最终会以2倍CPU核数(4个)线程运行,而不会以max_tn = 64/4=16个线程运行。
在实际情况中,当然不能每个循环都象上面一样写几行代码来计算一遍,可以将其写成一个独立的功能函数如下:
const int g_ncore = omp_get_num_procs(); //获取执行核的数量
 
/** 计算循环迭代需要的线程数量
     根据循环迭代次数和CPU核数及一个线程最少需要的循环迭代次数
     来计算出需要的线程数量,计算出的最大线程数量不超过CPU核数
 
     @param   int n - 循环迭代次数  
     @param   int min_n - 单个线程需要的最少迭代次数   
     @return int - 线程数量    
*/
int dtn(int n, int min_n)
{
   int max_tn = n / min_n;
   int tn = max_tn > g_ncore ? g_ncore : max_tn; //tn表示要设置的线程数量
   if ( tn < 1 )
   {
        tn = 1;
   }
   return tn;
}


这样每次并行化循环时就可以直接使用函数dtn()来获取合适的线程数量,前面的代码可以简写成如下形式:
#pragma omp parallel for num_threads(dtn(n, MIN_ITERATOR_NUM))
     for ( i = 0; i < n; i++ )
     {
         printf("Thread Id = %ld/n", omp_get_thread_num());
         //Do some work here
     }


 
当然具体设置多少线程要视情况而定的,一般情况下线程数量刚好等于CPU核数可以取得比较好的性能,因为线程数等于CPU核数时,每个核执行一个任务,没有任务切换开销。

你可能感兴趣的:(动态设置线程数量的例子)