求一个递推式(不好怎么概括。。)的函数的值。
即 f(n)=a1f(n-1)+a2f(n-2)+...+adf(n-d);
根据矩阵乘法的定义我们可以很容易地构造出矩阵,每次乘法即可求出下一位f(n)的值并在距震中保存f(n)-----f(n-d+1)。
像我这种傻逼看错好几次运算法则的人 = =
第一道矩乘对着老人家模板打得几乎一模一样-----只是觉得他的写法比较优雅= =(虽然我感觉那么多memcpy会不会让常数很大。。。)
/*========================================================================== # Last modified: 2016-03-03 21:11 # Filename: uva10870.cpp # Description: ==========================================================================*/ #define me AcrossTheSky #include <cstdio> #include <cmath> #include <ctime> #include <string> #include <cstring> #include <cstdlib> #include <iostream> #include <algorithm> #include <set> #include <map> #include <stack> #include <queue> #include <vector> #define lowbit(x) (x)&(-x) #define FOR(i,a,b) for((i)=(a);(i)<=(b);(i)++) #define FORP(i,a,b) for(int i=(a);i<=(b);i++) #define FORM(i,a,b) for(int i=(a);i>=(b);i--) #define ls(a,b) (((a)+(b)) << 1) #define rs(a,b) (((a)+(b)) >> 1) #define getlc(a) ch[(a)][0] #define getrc(a) ch[(a)][1] #define maxn 100 #define maxm 100000 #define pi 3.1415926535898 #define _e 2.718281828459 #define INF 1070000000 using namespace std; typedef long long ll; typedef unsigned long long ull; template<class T> inline void read(T& num) { bool start=false,neg=false; char c; num=0; while((c=getchar())!=EOF) { if(c=='-') start=neg=true; else if(c>='0' && c<='9') { start=true; num=num*10+c-'0'; } else if(start) break; } if(neg) num=-num; } /*==================split line==================*/ typedef long long Matrix[maxn][maxn]; typedef long long Vector[maxn]; int n,m,d,sz; void matrix_mul(Matrix A,Matrix B,Matrix res){ Matrix C; memset(C,0,sizeof(C)); FORP(i,0,sz-1) FORP(j,0,sz-1) FORP(k,0,sz-1)C[i][j]=(C[i][j]+A[i][k]*B[k][j])%m; memcpy(res,C,sizeof(C)); } void matrix_pow(Matrix A,int n,Matrix res){ Matrix a,r; memcpy(a,A,sizeof(a)); memset(r,0,sizeof(r)); FORP(i,0,sz-1) r[i][i]=1; while (n){ if (n&1) matrix_mul(r,a,r); n >>= 1; matrix_mul(a,a,a); } memcpy(res,r,sizeof(r)); } void transform(Vector d,Matrix A,Vector res){ Vector r; memset(r,0,sizeof(r)); FORP(i,0,sz-1) FORP(j,0,sz-1) r[j]=(r[j]+d[i]*A[i][j])%m; memcpy(res,r,sizeof(r)); } int main(){ while (scanf("%d%d%d",&d,&n,&m)!=EOF){ if (d==0 && n==0 && m==0) return 0; Matrix A; Vector a,f; FORP(i,0,d-1) { read(a[i]); a[i]%=m;} FORM(i,d-1,0) { read(f[i]); f[i]%=m;} memset(A,0,sizeof(A)); FORP(i,0,d-1) A[i][0]=a[i]; FORP(i,1,d-1) A[i-1][i]=1; sz=d; matrix_pow(A,n-d,A); transform(f,A,f); cout << f[0] << endl; } }