英文链接:http://scikit-learn.org/stable/auto_examples/applications/topics_extraction_with_nmf_lda.html
这是一个使用NMF和LDA对一个语料集进行话题抽取的例子。
输入分别是是tf-idf矩阵(NMF)和tf矩阵(LDA)。
输出是一系列的话题,每个话题由一系列的词组成。
默认的参数(n_samples/n_features/n_topics)会使这个例子运行数十秒。
你可以尝试修改问题的规模,但是要注意,NMF的时间复杂度是多项式级别的,LDA的时间复杂度与(n_samples*iterations)成正比。
几点注意事项:
(1)其中line 61的代码需要注释掉,才能看到输出结果。
(2)第一次运行代码,程序会从网上下载新闻数据,然后保存在一个缓存目录中,之后再运行代码,就不会重复下载了。
(3)关于NMF和LDA的参数设置,可以到sklearn的官网上查看【NMF官方文档】【LDA官方文档】。
(4)该代码对应的sk-learn版本为 scikit-learn 0.17.1
代码:
1 # Author: Olivier Grisel <[email protected]> 2 # Lars Buitinck <[email protected]> 3 # Chyi-Kwei Yau <[email protected]> 4 # License: BSD 3 clause 5 6 from __future__ import print_function 7 from time import time 8 9 from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer 10 from sklearn.decomposition import NMF, LatentDirichletAllocation 11 from sklearn.datasets import fetch_20newsgroups 12 13 n_samples = 2000 14 n_features = 1000 15 n_topics = 10 16 n_top_words = 20 17 18 19 def print_top_words(model, feature_names, n_top_words): 20 for topic_idx, topic in enumerate(model.components_): 21 print("Topic #%d:" % topic_idx) 22 print(" ".join([feature_names[i] 23 for i in topic.argsort()[:-n_top_words - 1:-1]])) 24 print() 25 26 27 # Load the 20 newsgroups dataset and vectorize it. We use a few heuristics 28 # to filter out useless terms early on: the posts are stripped of headers, 29 # footers and quoted replies, and common English words, words occurring in 30 # only one document or in at least 95% of the documents are removed. 31 32 print("Loading dataset...") 33 t0 = time() 34 dataset = fetch_20newsgroups(shuffle=True, random_state=1, 35 remove=('headers', 'footers', 'quotes')) 36 data_samples = dataset.data 37 print("done in %0.3fs." % (time() - t0)) 38 39 # Use tf-idf features for NMF. 40 print("Extracting tf-idf features for NMF...") 41 tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, #max_features=n_features, 42 stop_words='english') 43 t0 = time() 44 tfidf = tfidf_vectorizer.fit_transform(data_samples) 45 print("done in %0.3fs." % (time() - t0)) 46 47 # Use tf (raw term count) features for LDA. 48 print("Extracting tf features for LDA...") 49 tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_features, 50 stop_words='english') 51 t0 = time() 52 tf = tf_vectorizer.fit_transform(data_samples) 53 print("done in %0.3fs." % (time() - t0)) 54 55 # Fit the NMF model 56 print("Fitting the NMF model with tf-idf features," 57 "n_samples=%d and n_features=%d..." 58 % (n_samples, n_features)) 59 t0 = time() 60 nmf = NMF(n_components=n_topics, random_state=1, alpha=.1, l1_ratio=.5).fit(tfidf) 61 exit() 62 print("done in %0.3fs." % (time() - t0)) 63 64 print("\nTopics in NMF model:") 65 tfidf_feature_names = tfidf_vectorizer.get_feature_names() 66 print_top_words(nmf, tfidf_feature_names, n_top_words) 67 68 print("Fitting LDA models with tf features, n_samples=%d and n_features=%d..." 69 % (n_samples, n_features)) 70 lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=5, 71 learning_method='online', learning_offset=50., 72 random_state=0) 73 t0 = time() 74 lda.fit(tf) 75 print("done in %0.3fs." % (time() - t0)) 76 77 print("\nTopics in LDA model:") 78 tf_feature_names = tf_vectorizer.get_feature_names() 79 print_top_words(lda, tf_feature_names, n_top_words)
结果:
Loading dataset... done in 2.222s. Extracting tf-idf features for NMF... done in 2.730s. Extracting tf features for LDA... done in 2.702s. Fitting the NMF model with tf-idf features,n_samples=2000 and n_features=1000... done in 1.904s. Topics in NMF model: Topic #0: don just people think like know good time right ve say did make really way want going new year ll Topic #1: windows thanks file card does dos mail files know program use advance hi window help software looking ftp video pc Topic #2: drive scsi ide drives disk controller hard floppy bus hd cd boot mac cable card isa rom motherboard mb internal Topic #3: key chip encryption clipper keys escrow government algorithm security secure encrypted public nsa des enforcement law privacy bit use secret Topic #4: 00 sale 50 shipping 20 10 price 15 new 25 30 dos offer condition 40 cover asking 75 01 interested Topic #5: armenian armenians turkish genocide armenia turks turkey soviet people muslim azerbaijan russian greek argic government serdar kurds population ottoman million Topic #6: god jesus bible christ faith believe christians christian heaven sin life hell church truth lord does say belief people existence Topic #7: mouse driver keyboard serial com1 port bus com3 irq button com sys microsoft ball problem modem adb drivers card com2 Topic #8: space nasa shuttle launch station sci gov orbit moon earth lunar satellite program mission center cost research data solar mars Topic #9: msg food chinese flavor eat glutamate restaurant foods reaction taste restaurants salt effects carl brain people ingredients natural causes olney Fitting LDA models with tf features, n_samples=2000 and n_features=1000... done in 22.548s. Topics in LDA model: Topic #0: government people mr law gun state president states public use right rights national new control american security encryption health united Topic #1: drive card disk bit scsi use mac memory thanks pc does video hard speed apple problem used data monitor software Topic #2: said people armenian armenians turkish did saw went came women killed children turkey told dead didn left started greek war Topic #3: year good just time game car team years like think don got new play games ago did season better ll Topic #4: 10 00 15 25 12 11 20 14 17 16 db 13 18 24 30 19 27 50 21 40 Topic #5: windows window program version file dos use files available display server using application set edu motif package code ms software Topic #6: edu file space com information mail data send available program ftp email entry info list output nasa address anonymous internet Topic #7: ax max b8f g9v a86 pl 145 1d9 0t 34u 1t 3t giz bhj wm 2di 75u 2tm bxn 7ey Topic #8: god people jesus believe does say think israel christian true life jews did bible don just know world way church Topic #9: don know like just think ve want does use good people key time way make problem really work say need