有一类面试题,既可以考察工程师算法、也可以兼顾实践应用、甚至创新思维,这些题目便是好的题目,有区分度表现为可以有一般解,也可以有最优解。最近就发现了一个这样的好题目,拿出来晒一晒。
1 题目
原文:
There is an array of 10000000 different int numbers. Find out its largest 100 elements. The implementation should be optimized for executing speed.
翻译:
有一个长度为1000万的int数组,各元素互不重复。如何以最快的速度找出其中最大的100个元素?
2 分析与解
(接下来的算法均以Java语言实现。)
首先,第一个冒出来的想法是——排序。各种排序算法对数组进行一次sort,然后limit出max的100个即可,时间复杂度为O(nLogN)。
2.1 堆排序思路
我以堆排序来实现这个题目,这样可以使用非常少的内存空间,始终维护一个100个元素大小的最小堆,堆顶int[0]即是100个元素中最小的,插入一个新的元素的时候,将这个元素和堆顶int[0]进行交换,也就是淘汰掉堆顶,然后再维护一个最小堆,使int[0]再次存储最小的元素,循环往复,不断迭代,最终剩下的100个元素就是结果,该算法时间复杂度仍然是O(nLogN),优点在于节省内存空间,算法时间复杂度比较理想,平均耗时400ms。
代码实现如下,
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**
@author zhangxu04
*/
public class FindTopElements3 {
private static final int ARRAY_LENGTH = 10000000; // big array length
public static void main(String[] args) {
FindTopElements3 fte = new FindTopElements3();
// Get a array which is not in order and elements are not duplicate
int[] array = getShuffledArray(ARRAY_LENGTH);
// Find top 100 elements and print them by desc order in the console
long start = System.currentTimeMillis();
fte.findTop100(array);
long end = System.currentTimeMillis();
System.out.println("Costs " + (end - start) + "ms");
}
public void findTop100(int[] arr) {
MinimumHeap heap = new MinimumHeap(100);
for (Integer i : arr) {
heap.add(i);
if (heap.size() > 100) {
heap.deleteTop();
}
}
for (int i = 0; i < 100; i++) {
System.out.println(heap.deleteTop());
}
}
@return array not in order and elements are not duplicate
*/
private static int[] getShuffledArray(int len) {
System.out
.println("Start to generate test array... this may take several seconds.");
List list = new ArrayList (len);
for (int i = 0; i < len; i++) {
list.add(i);
}
Collections.shuffle(list);
int[] ret = new int[len];
for (int i = 0; i < len; i++) {
ret[i] = list.get(i);
}
return ret;
}
}
class MinimumHeap {
int[] items;
int size;
public MinimumHeap(int size) {
items = new int[size + 1];
size = 0;
}
void shiftUp(int index) {
int intent = items[index];
while (index > 0) {
int pindex = (index - 1) / 2;
int parent = items[pindex];
if (intent < parent) {
items[index] = parent;
index = pindex;
} else {
break;
}
}
items[index] = intent;
}
void shiftDown(int index) {
int intent = items[index];
int leftIndex = 2 * index + 1;
while (leftIndex < size) {
int minChild = items[leftIndex];
int minIndex = leftIndex;
int rightIndex = leftIndex + 1;
if (rightIndex < size) {
int rightChild = items[rightIndex];
if (rightChild < minChild) {
minChild = rightChild;
minIndex = rightIndex;
}
}
if (minChild < intent) {
items[index] = minChild;
index = minIndex;
leftIndex = index * 2 + 1;
} else {
break;
}
}
items[index] = intent;
}
public void add(int item) {
items[size++] = item;
shiftUp(size - 1);
}
public int deleteTop() {
if (size < 1) {
return 0;
}
int maxItem = items[0];
int lastItem = items[size - 1];
size--;
if (size < 1) {
return lastItem;
}
items[0] = lastItem;
shiftDown(0);
return maxItem;
}
public boolean isEmpty() {
return size < 1;
}
public int size() {
return size;
}
/**
* MinimumHeap main test
* @param args
*/
public static void main(String[] args) {
MinimumHeap heap = new MinimumHeap(7);
heap.add(2);
heap.add(3);
heap.add(5);
heap.add(1);
heap.add(4);
heap.add(7);
heap.add(6);
heap.deleteTop();
heap.deleteTop();
while (!heap.isEmpty()) {
System.out.println(heap.deleteTop());
}
}
}
那么挖掘下题目,两个点是我们的优化线索:
1、元素互不重复
2、最快的速度,没有提及对于系统资源以及空间的要求
2.2 多线程分而治之策略
顺着#2条线索,可以给出一个多线程的优化版本,使用分而治之的策略,将1000万大小的数组分割为1000个元素组成的若干小数组,利用JDK自带的高效排序算法void java.util.Arrays.sort(int[] a)来进行排序,多线程处理,主线程汇总结果后取出各个小数组的top 100,归并后再进行一次排序得出结果。
代码实现如下,
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.CompletionService;
import java.util.concurrent.ExecutorCompletionService;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
/**
@author zhangxu04
*/
public class FindTopElements {
private static final int ARRAY_LENGTH = 10000000; // big array length
private static final int ELEMENT_NUM_PER_GROUP = 10000; // split big array into sub-array, this represents sub-array length
private static final int TOP_ELEMENTS_NUM = 100; // top elements number
private ExecutorService executorService;
private CompletionService completionService;
public FindTopElements() {
int MAX_THREAD_COUNT = 50;
executorService = Executors.newFixedThreadPool(MAX_THREAD_COUNT);
completionService = new ExecutorCompletionService (executorService);
}
@param args
*/
public static void main(String[] args) {
FindTopElements findTopElements = new FindTopElements();
// Get a array which is not in order and elements are not duplicate
int[] array = getShuffledArray(ARRAY_LENGTH);
// Find top 100 elements and print them by desc order in the console
long start = System.currentTimeMillis();
findTopElements.findTop100(array);
long end = System.currentTimeMillis();
System.out.println("Costs " + (end - start) + "ms");
}
CompletionService
, we can take out completed result from the pool as soon as possible,ExcutorService
and Future
class. Moreover, the can optimize the performance of/
private void findTop100(int[] arr) {
System.out.println("Start to compute.");
int groupNum = (ARRAY_LENGTH / ELEMENT_NUM_PER_GROUP);
System.out.println("Split " + ARRAY_LENGTH + " elements into " + groupNum + " groups");
for (int i = 0; i < groupNum; i++) {
int[] toBeSortArray = new int[ELEMENT_NUM_PER_GROUP];
System.arraycopy(arr, i ELEMENT_NUM_PER_GROUP, toBeSortArray, 0, ELEMENT_NUM_PER_GROUP);
completionService.submit(new FindTop100(toBeSortArray));
}
try {
int[] overallArray = new int[TOP_ELEMENTS_NUM * groupNum];
for (int i = 0; i < groupNum; i++) {
System.arraycopy(completionService.take().get(), 0, overallArray, i * TOP_ELEMENTS_NUM, TOP_ELEMENTS_NUM);
}
Arrays.sort(overallArray);
for (int i = 1; i <= TOP_ELEMENTS_NUM; i++) {
System.out.println(overallArray[TOP_ELEMENTS_NUM * groupNum - i]);
}
System.out.println("Finish to output result.");
} catch (Exception e) {
e.printStackTrace();
}
executorService.shutdown();
}
3) return the new array
*/
private class FindTop100 implements Callable {
private int[] array;
public FindTop100(int[] array) {
this.array = array;
}
@Override
public int[] call() throws Exception {
int len = array.length;
Arrays.sort(array);
int[] result = new int[TOP_ELEMENTS_NUM];
int index = 0;
for (int i = 1; i <= TOP_ELEMENTS_NUM; i++) {
result[index++] = array[len - i];
}
return result;
}
}
/**@return array not in order and elements are not duplicate
*/
private static int[] getShuffledArray(int len) {
System.out.println("Start to generate test array... this may take several seconds.");
List list = new ArrayList (len);
for (int i = 0; i < len; i++) {
list.add(i);
}
Collections.shuffle(list);
int[] ret = new int[len];
for (int i = 0; i < len; i++) {
ret[i] = list.get(i);
}
return ret;
}
}
分析看来,这个解的优势在于充分利用了系统资源,使用了分而治之的思想,将时间复杂度平均分配到了每个子线程中,但是代码中大量用到了System.arraycopy进行数组拷贝,占用内存过于多,甚至需要指定JVM的内存-Xmx才可以正常运行起来,平均耗时250ms。
2.3 位图数组思路
这个思路属于比较创新的方式,考虑到优化线索#1提到的无重复元素,那么可以使用位图数组存储元素,一个int占用4个字节,32个bit,也就是说1个int可以表示32个数字的位置。 维护一个数组长度/32+1的位图数组x,遍历给定的数组,将数字安插进入这个位图数组x中,例如int[0]=62,那么
index=62/32=1
bit_index=62 mod 32 = 30
那么就置位图数组的x[1]=x[1] | 30,采用“位或”是为了不丢掉以前处理过的数字。
代码实现如下,
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**
@author zhangxu04
*/
public class FindTopElements2 {
private static final int ARRAY_LENGTH = 10000000; // big array length
public static void main(String[] args) {
FindTopElements2 fte = new FindTopElements2(ARRAY_LENGTH + 1);
// Get a array which is not in order and elements are not duplicate
int[] array = getShuffledArray(ARRAY_LENGTH);
// Find top 100 elements and print them by desc order in the console
long start = System.currentTimeMillis();
fte.findTop100(array);
long end = System.currentTimeMillis();
System.out.println("Costs " + (end - start) + "ms");
}
private final int[] bitmap;
private final int size;
public FindTopElements2(final int size) {
this.size = size;
int len = ((size % 32) == 0) ? size / 32 : size / 32 + 1;
this.bitmap = new int[len];
}
private static int index(final int number) {
return number / 32;
}
private static int position(final int number) {
return number % 32;
}
private void adjustBitMap(final int index, final int position) {
int bit = bitmap[index] | (1 << position);
bitmap[index] = bit;
}
public void add(int[] numArr) {
for (int i = 0; i < numArr.length; i++) {
add(numArr[i]);
}
}
public void add(int number) {
adjustBitMap(index(number), position(number));
}
public boolean getIndex(final int index) {
if (index > size) {
return false;
}
int bit = (bitmap[index(index)] >> position(index)) & 0x0001;
return (bit == 1);
}
private void findTop100(int[] arr) {
System.out.println("Start to compute.");
add(arr);
int[] result = new int[100];
int index = 0;
for (int i = bitmap.length - 1; i >= 0; i--) {
for (int j = 31; j >= 0; j--) {
if (((bitmap[i] >> j) & 0x0001) == 1) {
if (index == result.length) {
break;
}
result[index++] = ((i) * 32) + j ;
}
}
if (index == result.length) {
break;
}
}
for (int j = 0; j < result.length; j++) {
System.out.println(result[j]);
}
System.out.println("Finish to output result.");
}
/**@return array not in order and elements are not duplicate
*/
private static int[] getShuffledArray(int len) {
System.out.println("Start to generate test array... this may take several seconds.");
List list = new ArrayList (len);
for (int i = 0; i < len; i++) {
list.add(i);
}
Collections.shuffle(list);
int[] ret = new int[len];
for (int i = 0; i < len; i++) {
ret[i] = list.get(i);
}
return ret;
}
}
这个算法的时间复杂度是O(N),非常理想,平均耗时可以减少到50ms作用,性能比排序算法提升了10倍以上,不足在于位图数组的长度取决于给定数组的最大值,如果分布比较平均,并且最大值比较小,那么占用内存空间就可以得到有效的控制。
3 总结
综上给出的题目,可以看出解决一个实际问题,既可以用纯算法的思路来解决,我们甚至可以自己动手实现,例如自己写的堆排序,非常节省空间,如果用JDK自带的快速排序,那么无疑这一点不会好于我们的实现。 现今,处理大数据问题一个倾向的思路就是充分利用系统资源,充分发挥多核、大内存计算型服务器的能力,为我们提高效率,多线程是在JAVA中以及有了非常好用的API以及concurrent包下的工具类,能否有效利用这些工具提速我们的程序也很关键。同时,问题总有一些点可以让我们找到最适合的场景来解决,例如位图数组的思路,在性能上达到了最佳,同时多消耗的内存对于现代的服务器来说完全在可控范围内,因此不失为一种创新的好思路。