This problem can be solve in simpler O(NsqrtN) solution, but I will describe O(NlogN) one.
We will solve this problem in offline. For each x (0 ≤ x < n) we should keep all the queries that end in x. Iterate that x from 0 to n - 1. Also we need to keep some array D such that for current x Dl + Dl + 1 + ... + Dx will be the answer for query [l;x]. To keep D correct, before the processing all queries that end in x, we need to update D. Let t be the current integer in A, i. e. Ax, and vector P be the list of indices of previous occurences of t (0-based numeration of vector). Then, if |P| ≥ t, you need to add 1 to DP[|P| - t], because this position is now the first (from right) that contains exactly t occurences of t. After that, if |P| > t, you need to subtract 2 from DP[|P| - t - 1], in order to close current interval and cancel previous. Finally, if |P| > t + 1, then you need additionally add 1 to DP[|P| - t - 2] to cancel previous close of the interval.
#include <cstdio> #include <cstring> #include <algorithm> #include <string> #include <iostream> #include <iomanip> #include <cmath> #include <map> #include <set> #include <queue> using namespace std; #define ls(rt) rt*2 #define rs(rt) rt*2+1 #define ll long long #define ull unsigned long long #define rep(i,s,e) for(int i=s;i<e;i++) #define repe(i,s,e) for(int i=s;i<=e;i++) #define CL(a,b) memset(a,b,sizeof(a)) #define IN(s) freopen(s,"r",stdin) #define OUT(s) freopen(s,"w",stdout) const int MAXN = 1e5+100; int n,m; int a[MAXN],c[MAXN],ans[MAXN]; struct Query { int l,r,id; bool operator < (const Query &t) const {return r<t.r;} }q[MAXN]; inline int lowbit(int x){return x&(-x);} void add(int i, int v) { while(i<=n) { c[i]+=v; i+=lowbit(i); } } int sum(int x) { int ret=0; while(x>0) { ret+=c[x]; x-=lowbit(x); } return ret; } int main() { int sz; while(~scanf("%d%d",&n,&m)) { vector<int>data[MAXN]; CL(c,0); for(int i=1;i<=n;i++) scanf("%d",&a[i]); for(int i=1;i<=m;i++) { scanf("%d%d",&q[i].l,&q[i].r); q[i].id=i; } sort(q+1,q+1+m); for(int i=1,k=1;i<=n;i++) { if(a[i]<=n) { data[a[i]].push_back(i); sz=data[a[i]].size(); if(sz>=a[i]) { add(data[a[i]][sz-a[i]],1); if(sz>a[i])add(data[a[i]][sz-a[i]-1],-2); if(sz>a[i]+1)add(data[a[i]][sz-a[i]-2],1); } } while(q[k].r==i && k<=m) { ans[q[k].id]=sum(q[k].r)-sum(q[k].l-1); k++; } } for(int i=1;i<=m;i++) printf("%d\n",ans[i]); } return 0; }
用于调试理解的及及加了凝视的代码
#include <cstdio> #include <cstring> #include <algorithm> #include <string> #include <iostream> #include <iomanip> #include <cmath> #include <map> #include <set> #include <queue> using namespace std; #define ls(rt) rt*2 #define rs(rt) rt*2+1 #define ll long long #define ull unsigned long long #define rep(i,s,e) for(int i=s;i<e;i++) #define repe(i,s,e) for(int i=s;i<=e;i++) #define CL(a,b) memset(a,b,sizeof(a)) #define IN(s) freopen(s,"r",stdin) #define OUT(s) freopen(s,"w",stdout) const int MAXN = 1e5+100; int n,m; int a[MAXN],c[MAXN],ans[MAXN]; struct Query { int l,r,id; bool operator < (const Query &t) const {return r<t.r;} }q[MAXN]; inline int lowbit(int x){return x&(-x);} void add(int i, int v) { while(i<=n) { c[i]+=v; i+=lowbit(i); } } int sum(int x) { int ret=0; while(x>0) { ret+=c[x]; x-=lowbit(x); } return ret; } int main() { int sz; while(~scanf("%d%d",&n,&m)) { vector<int>data[MAXN]; CL(c,0); for(int i=1;i<=n;i++) scanf("%d",&a[i]); for(int i=1;i<=m;i++) { scanf("%d%d",&q[i].l,&q[i].r); q[i].id=i; } sort(q+1,q+1+m); for(int i=1,k=1;i<=n;i++) { if(a[i]<=n) { data[a[i]].push_back(i); sz=data[a[i]].size(); if(sz>=a[i]) { add(data[a[i]][sz-a[i]],1);//从右往左第a[i]次出现a[i]的位置+1 if(sz>a[i])add(data[a[i]][sz-a[i]-1],-2); //从右往左第a[i]+1次出现a[i]的位置 -2, //由于当Sz==a[i]的时候,这个位置已经被加过1。此次读到i的时候。 //从右往左第a[i]次出现a[i]的位置也被+1。 //那么查询第a[i]+1次出现a[i]的位置到i。答案就是-2+1+1=0, //查询第a[i]次出现a[i]的位置到i,答案就是1 if(sz>a[i]+1)add(data[a[i]][sz-a[i]-2],1); //从右往左第a[i]+2次出现a[i]的位置 +1,之前被+1-2,所以变成0 //这三行代码维护出来,从当前的i往左数,第a[i]次出现a[i]的位置总是1 //第a[i]+1次出现a[i]的位置总是-1,第a[i]+2及很多其它次的位置总是0,这样以i为右端点的区间的查询结果就都对了 } } while(q[k].r==i && k<=m) { ///////////// printf("#i=%d#\n",i); for(int j=0;j<=n;j++) printf("c[%d]=%d\n",j,c[j]); ////////////// ans[q[k].id]=sum(q[k].r)-sum(q[k].l-1); k++; } } for(int i=1;i<=m;i++) printf("%d\n",ans[i]); } return 0; }