2013.03.09
最近正在学习一个基于信号稀疏性或可压缩性的新兴采样理论——压缩感知理论。
压缩感知就是,对稀疏或可压缩信号可通过远低于Shannon-Nyquist采样定理标准的方式进行采样数据,其仍能够实现稀疏或可压缩信号的精确重构,这使得其在信号处理领域中有着突出的优点和潜在的应用前景。
在这里,我提供一些压缩感知理论和机器学习相关的国外研究此技术的大学网站,以及处于这一领域的牛人博客和主页,还有一些教程等。希望有志同道合的朋友一起研究,偶是初学者,请多多指教。
http://dsp.rice.edu/cs美国莱斯大学压缩感知资源,如果你是初学者,请看这里面的资源,帮助非常大的。网站里面有很多的资源和代码等,足够去研究好一段时间了。
http://sparselab.stanford.edu/美国斯坦福大学的Sparselab
http://users.cms.caltech.edu/~jtropp/Joel A. Tropp
http://www.cs.technion.ac.il/~elad/Michael Elad
http://www.dbabacan.info/software.html一些matlab codes
http://v.163.com/special/opencourse/machinelearning.html网易机器学习公开课
http://dsp.rice.edu/software/rwt.shtml一些Toolbox和codes
http://courseminer.com/一些公开课,我觉得很不错
http://class.stanford.edu/斯坦福大学的一些课程啥的等等
http://www.lx.it.pt/~mtf/GPSR/ GPSR算法
http://dict.cnki.net/专业词汇翻译网站——CNKI翻译助手,再也不担心专业词汇了。英语翻译,谷歌翻译不废话。
http://www.pudn.com/代码下载网站和CSDN一样,其实代码下载网站很多,只需谷歌下。
未完待续。。。。。各位补充!谢谢!
2013.03.17
国外人工智能界机构主页
http://people.cs.uchicago.edu/~niyogi/
http://www.cs.uchicago.edu/people/
http://pages.cs.wisc.edu/~jerryzhu/
http://www.kyb.tuebingen.mpg.de/~chapelle
http://people.cs.uchicago.edu/~xiaofei/
http://www.cs.uiuc.edu/homes/dengcai2/
http://www.kyb.mpg.de/~bs
http://research.microsoft.com/~denzho/
http://www-users.cs.umn.edu/~kumar/dmbook/index.php#item5 ——【(resources for the book of the introduction of data mining by Pang-ning Tan et.al. )(国内已经有相应的中文版)】
http://www.cs.toronto.edu/~roweis/lle/publications.html ——【(lle算法源代码及其相关论文)】
http://dataclustering.cse.msu.edu/index.html#software——【(data clustering)】
http://www.cs.toronto.edu/~roweis/ ——【(里面有好多资源)】
http://www.cse.msu.edu/~lawhiu/ ——【(manifold learning)】
http://www.math.umn.edu/~wittman/mani/ ——【(manifold learning demo in matlab)】
http://www.iipl.fudan.edu.cn/~zhangjp/literatures/MLF/INDEX.HTM ——【(manifold learning in matlab)】
http://videolectures.net/mlss05us_belkin_sslmm/ ——【(semi supervised learning with manifold method by Belkin)】
http://isomap.stanford.edu/ ——【(isomap主页)】
http://web.mit.edu/cocosci/josh.html ——【MIT TENENBAUM J B主页】
http://web.engr.oregonstate.edu/~tgd/ ——【(国际著名的人工智能专家 Thomas G. Dietterich)】
http://www.cs.berkeley.edu/~jordan/ ——【(MIchael I.Jordan)】
http://www.cs.cmu.edu/~awm/ ——【(Andrew W. Moore's homepage)】
http://learning.cs.toronto.edu/ ——【(加拿大多伦多大学机器学习小组)】
http://www.cs.cmu.edu/~tom/ ——【(Tom Mitchell,里面有与教材匹配的slide。)】
牛人主页
Kernel Methods |
|
Alexander J. Smola Maximum Mean Discrepancy (MMD), Hilbert-Schmidt Independence Criterion (HSIC) Bernhard Sch?lkopf Kernel PCA James T Kwok Pre-Image, Kernel Learning, Core Vector Machine(CVM) Jieping Ye Kernel Learning, Linear Discriminate Analysis, Dimension Deduction |
|
Multi-Task Learning |
|
Andreas Argyriou Multi-Task Feature Learning Charles A. Micchelli Multi-Task Feature Learning, Multi-Task Kernel Learning Massimiliano Pontil Multi-Task Feature Learning Yiming Ying Multi-Task Feature Learning, Multi-Task Kernel Learning
|
|
Semi-supervised Learning |
|
Partha Niyogi Manifold Regularization, Laplacian Eigenmaps Mikhail Belkin Manifold Regularization, Laplacian Eigenmaps Vikas Sindhwani Manifold Regularization Xiaojin Zhu Graph-based Semi-supervised Learning |
|
Multiple Instance Learning |
|
Sally A Goldman EM-DD, DD-SVM, Multiple Instance Semi Supervised Learning(MISS) |
|
Dimensionality Reduction |
|
Neil Lawrence Gaussian Process Latent Variable Models (GPLVM) Lawrence K. Saul Maximum Variance Unfolding(MVU), Semidefinite Embedding(SDE) |
|
Machine Learning |
|
Michael I. Jordan Graphical Models John Lafferty Diffusion Kernels, Graphical Models Daphne Koller Logic, Probability Zhang Tong Theoretical Analysis of Statistical Algorithms, Multi-task Learning, Graph-based Semi-supervised Learning Zoubin Ghahramani Bayesian approaches to machine learning Machine Learning @ Toronto |
|
Statitiscal Machine Learning & Optimization |
|
Jerome H Friedman GLasso, Statistical view of AdaBoost, Greedy Function Approximation Thevor Hastie Lasso Stephen Boyd Convex Optimization C.J Lin Libsvm |
http://manifold.cs.uchicago.edu/
模式识别和神经网络工具箱
http://www.ncrg.aston.ac.uk/netlab/index.php
机器学习开源代码
http://mloss.org/software/tags/large-scale-learning/
统计学开源代码
http://www.wessa.net/
matlab各种工具箱链接
http://www.tech.plym.ac.uk/spmc/links/matlab/matlab_toolbox.html
统计学学习经典在线教材
http://www.statistics4u.info/
机器学习开源源代码
http://mloss.org/software/language/matlab/
and so on........(部分来源于网络)