压缩感知技术

2013.03.09

       最近正在学习一个基于信号稀疏性或可压缩性的新兴采样理论——压缩感知理论。

       压缩感知就是,对稀疏或可压缩信号可通过远低于Shannon-Nyquist采样定理标准的方式进行采样数据,其仍能够实现稀疏或可压缩信号的精确重构,这使得其在信号处理领域中有着突出的优点和潜在的应用前景。

       在这里,我提供一些压缩感知理论和机器学习相关的国外研究此技术的大学网站,以及处于这一领域的牛人博客和主页,还有一些教程等。希望有志同道合的朋友一起研究,偶是初学者,请多多指教。

      

        http://dsp.rice.edu/cs美国莱斯大学压缩感知资源,如果你是初学者,请看这里面的资源,帮助非常大的。网站里面有很多的资源和代码等,足够去研究好一段时间了。

 

        http://sparselab.stanford.edu/美国斯坦福大学的Sparselab

 

        http://users.cms.caltech.edu/~jtropp/Joel A. Tropp

 

        http://www.cs.technion.ac.il/~elad/Michael Elad

 

        http://www.dbabacan.info/software.html一些matlab codes

 

        http://v.163.com/special/opencourse/machinelearning.html网易机器学习公开课

       

        http://dsp.rice.edu/software/rwt.shtml一些Toolbox和codes

   

        http://courseminer.com/一些公开课,我觉得很不错

     

        http://class.stanford.edu/斯坦福大学的一些课程啥的等等

 

        http://www.lx.it.pt/~mtf/GPSR/ GPSR算法

 

        http://dict.cnki.net/专业词汇翻译网站——CNKI翻译助手,再也不担心专业词汇了。英语翻译,谷歌翻译不废话。

 

        http://www.pudn.com/代码下载网站和CSDN一样,其实代码下载网站很多,只需谷歌下。

 

        未完待续。。。。。各位补充!谢谢!


2013.03.17

国外人工智能界机构主页

http://people.cs.uchicago.edu/~niyogi/

http://www.cs.uchicago.edu/people/

http://pages.cs.wisc.edu/~jerryzhu/

http://www.kyb.tuebingen.mpg.de/~chapelle

http://people.cs.uchicago.edu/~xiaofei/

http://www.cs.uiuc.edu/homes/dengcai2/

http://www.kyb.mpg.de/~bs

http://research.microsoft.com/~denzho/

http://www-users.cs.umn.edu/~kumar/dmbook/index.php#item5 ——【(resources for the book of the introduction of data mining by Pang-ning Tan et.al. )(国内已经有相应的中文版)】

http://www.cs.toronto.edu/~roweis/lle/publications.html ——
(lle算法源代码及其相关论文)】


http://dataclustering.cse.msu.edu/index.html#software——【(data clustering)】

http://www.cs.toronto.edu/~roweis/ ——【(里面有好多资源)】

http://www.cse.msu.edu/~lawhiu/ ——【(manifold learning)】

http://www.math.umn.edu/~wittman/mani/ ——【(manifold learning demo in matlab)】

http://www.iipl.fudan.edu.cn/~zhangjp/literatures/MLF/INDEX.HTM ——【(manifold learning in matlab)】

http://videolectures.net/mlss05us_belkin_sslmm/ ——【(semi supervised learning with manifold method by Belkin)】

http://isomap.stanford.edu/ ——【(isomap主页)】

http://web.mit.edu/cocosci/josh.html  ——【MIT    TENENBAUM J B主页】

http://web.engr.oregonstate.edu/~tgd/ ——【(国际著名的人工智能专家 Thomas G. Dietterich)】

http://www.cs.berkeley.edu/~jordan/ ——【(MIchael I.Jordan)】

http://www.cs.cmu.edu/~awm/  ——【(Andrew W. Moore's  homepage)】

http://learning.cs.toronto.edu/ ——【(加拿大多伦多大学机器学习小组)】

http://www.cs.cmu.edu/~tom/ ——【(Tom Mitchell,里面有与教材匹配的slide。)】


牛人主页


Kernel Methods

Alexander J. Smola

Maximum Mean Discrepancy (MMD), Hilbert-Schmidt Independence Criterion (HSIC)

Bernhard Sch?lkopf

Kernel PCA

James T Kwok

Pre-Image, Kernel Learning, Core Vector Machine(CVM)

Jieping Ye

Kernel Learning, Linear Discriminate Analysis, Dimension Deduction

Multi-Task Learning

Andreas Argyriou

Multi-Task Feature Learning

Charles A. Micchelli

Multi-Task Feature Learning, Multi-Task Kernel Learning

Massimiliano Pontil

Multi-Task Feature Learning

Yiming Ying

Multi-Task Feature Learning, Multi-Task Kernel Learning

Semi-supervised Learning


Partha Niyogi

Manifold Regularization, Laplacian Eigenmaps


Mikhail Belkin

Manifold Regularization, Laplacian Eigenmaps


Vikas Sindhwani

Manifold Regularization


Xiaojin Zhu

Graph-based Semi-supervised Learning

Multiple Instance Learning

Sally A Goldman

EM-DD, DD-SVM, Multiple Instance Semi Supervised Learning(MISS)

Dimensionality Reduction


Neil Lawrence

Gaussian Process Latent Variable Models (GPLVM)


Lawrence K. Saul

Maximum Variance Unfolding(MVU), Semidefinite Embedding(SDE)

Machine Learning

Michael I. Jordan

Graphical Models

John Lafferty

Diffusion Kernels, Graphical Models

Daphne Koller

Logic, Probability


Zhang Tong

Theoretical Analysis of Statistical Algorithms, Multi-task Learning, Graph-based Semi-supervised Learning


Zoubin Ghahramani

Bayesian approaches to machine learning


Machine Learning @ Toronto

Statitiscal Machine Learning & Optimization

Jerome H Friedman

GLasso, Statistical view of AdaBoost, Greedy Function Approximation

Thevor Hastie

Lasso

Stephen Boyd

Convex Optimization

C.J Lin

Libsvm


http://manifold.cs.uchicago.edu/

模式识别和神经网络工具箱

http://www.ncrg.aston.ac.uk/netlab/index.php

机器学习开源代码

http://mloss.org/software/tags/large-scale-learning/

统计学开源代码

http://www.wessa.net/

matlab各种工具箱链接

http://www.tech.plym.ac.uk/spmc/links/matlab/matlab_toolbox.html

统计学学习经典在线教材

http://www.statistics4u.info/

机器学习开源源代码

http://mloss.org/software/language/matlab/


and so on........(部分来源于网络)


 

 

 

你可能感兴趣的:(matlab,Matrix,压缩感知)