Floyd算法思想


本来代码量如此小的算法不用出模板了,但是的确思想还是很好的。


1.定义概览

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

 

2.算法描述

1)算法思想原理:

     Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

      从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述:

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

3).Floyd算法过程矩阵的计算----十字交叉法

方法:两条线,从左上角开始计算一直到右下角 如下所示

给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

相应计算方法如下:

Floyd算法思想_第1张图片

Floyd算法思想_第2张图片

Floyd算法思想_第3张图片

最后A3即为所求结果

 

3.算法代码实现

复制代码
typedef struct          
{        
    char vertex[VertexNum];                                //顶点表         
    int edges[VertexNum][VertexNum];                       //邻接矩阵,可看做边表         
    int n,e;                                               //图中当前的顶点数和边数         
}MGraph; 

void Floyd(MGraph g)
{
   int A[MAXV][MAXV];
   int path[MAXV][MAXV];
   int i,j,k,n=g.n;
   for(i=0;i<n;i++)
      for(j=0;j<n;j++)
      {   
             A[i][j]=g.edges[i][j];
            path[i][j]=-1;
       }
   for(k=0;k<n;k++)
   { 
        for(i=0;i<n;i++)
           for(j=0;j<n;j++)
               if(A[i][j]>(A[i][k]+A[k][j]))
               {
                     A[i][j]=A[i][k]+A[k][j];
                     path[i][j]=k;
                } 
     } 
} 
复制代码

算法时间复杂度:O(n3)


你可能感兴趣的:(Floyd算法思想)