Dubbo与Zookeeper、SpringMVC整合

  互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,Dubbo是一个分布式服务框架,在这种情况下诞生的。现在核心业务抽取出来,作为独立的服务,使前端应用能更快速和稳定的响应。

 

第一:介绍Dubbo背景

 

    Dubbo与Zookeeper、SpringMVC整合_第1张图片

 

 

 

大规模服务化之前,应用可能只是通过RMIHessian等工具,简单的暴露和引用远程服务,通过配置服务的URL地址进行调用,通过F5等硬件进行负载均衡。

(1) 当服务越来越多时,服务URL配置管理变得非常困难,F5硬件负载均衡器的单点压力也越来越大。

此时需要一个服务注册中心,动态的注册和发现服务,使服务的位置透明。

并通过在消费方获取服务提供方地址列表,实现软负载均衡和Failover,降低对F5硬件负载均衡器的依赖,也能减少部分成本。

(2) 当进一步发展,服务间依赖关系变得错踪复杂,甚至分不清哪个应用要在哪个应用之前启动,架构师都不能完整的描述应用的架构关系。

这时,需要自动画出应用间的依赖关系图,以帮助架构师理清理关系。

(3) 接着,服务的调用量越来越大,服务的容量问题就暴露出来,这个服务需要多少机器支撑?什么时候该加机器?

为了解决这些问题,第一步,要将服务现在每天的调用量,响应时间,都统计出来,作为容量规划的参考指标。

其次,要可以动态调整权重,在线上,将某台机器的权重一直加大,并在加大的过程中记录响应时间的变化,直到响应时间到达阀值,记录此时的访问量,再以此访问量乘以机器数反推总容量。

 

第二:Dubbo的简介

 

Dubbo是一个分布式服务框架,解决了上面的所面对的问题,Dubbo的架构如图所示:

Dubbo与Zookeeper、SpringMVC整合_第2张图片

 

节点角色说明:

Provider: 暴露服务的服务提供方。

Consumer: 调用远程服务的服务消费方。

Registry: 服务注册与发现的注册中心。

Monitor: 统计服务的调用次调和调用时间的监控中心。

Container: 服务运行容器。

 

调用关系说明:

0. 服务容器负责启动,加载,运行服务提供者。

1. 服务提供者在启动时,向注册中心注册自己提供的服务。

2. 服务消费者在启动时,向注册中心订阅自己所需的服务。

3. 注册中心返回服务提供者地址列表给消费者,如果有变更,注册中心将基于长连接推送变更数据给消费者。

4. 服务消费者,从提供者地址列表中,基于软负载均衡算法,选一台提供者进行调用,如果调用失败,再选另一台调用。

5. 服务消费者和提供者,在内存中累计调用次数和调用时间,定时每分钟发送一次统计数据到监控中心。

 

 

 

 

 Dubbo提供了很多协议,Dubbo议、RMI协议Hessian协议,我们查看Dubbo源代码,有各种协议的实现,如图所示:

Dubbo与Zookeeper、SpringMVC整合_第3张图片

 

 

我们之前没用Dubbo之前时,大部分都使用Hessian来使用我们服务的暴露和调用,利用HessianProxyFactory调用远程接口。

 

上面是参考了Dubbo官方网介绍,接下来我们来介绍SpringMVCDubboZookeeper整合使用。

 

第三:Dubbo与Zookeeper、SpringMVC整合使用

  

  第一步:在Linux上安装Zookeeper

 

       Zookeeper作为Dubbo服务的注册中心,Dubbo原先基于数据库的注册中心,没采用ZookeeperZookeeper一个分布式的服务框架,是树型的目录服务的数据存储,能做到集群管理数据 ,这里能很好的作为Dubbo服务的注册中心,Dubbo能与Zookeeper做到集群部署,当提供者出现断电等异常停机时,Zookeeper注册中心能自动删除提供者信息,当提供者重启时,能自动恢复注册数据,以及订阅请求。我们先在linux上安装Zookeeper,我们安装最简单的单点,集群比较麻烦。


获取【下载地址】   QQ: 313596790   【免费支持更新】

你可能感兴趣的:(redis,zookeeper,activemq,fastDFS,DUBBO)