- 2.6 聚焦:Word Embedding
少林码僧
AI大模型应用实战专栏wordembedding
聚焦:WordEmbeddingWordEmbedding(词嵌入)是一种将词语转化为低维向量表示的技术,使得词语在数学空间中具有语义上的相似性。它是自然语言处理(NLP)中不可或缺的一部分,为文本数据提供了强大的表示能力。与传统的基于词频的词袋模型(Bag-of-Words)相比,WordEmbedding能够捕捉到词语之间更深层的语义和上下文信息。1.词嵌入的定义与作用WordEmbeddin
- 基于Python爬虫的豆瓣电影影评数据可视化分析
wp_tao
Python副业接单实战项目python爬虫信息可视化
文章目录前言一、数据抓取二、数据可视化1.绘制词云图2.读入数据总结前言本文以电影《你好,李焕英》在豆瓣上的影评数据为爬取和分析的目标,利用python爬虫技术对影评数据进行了爬取,使用pandas库进行了数据清洗,使用jieba库进行分词,使用collections库进行词频统计,使用wordcloud库绘制词云图,使用matplotlib库绘制了评论人所在城市占比饼状图,并使用matplotl
- 微博文本挖掘并生成词云图(亲身经历~超级小白教程)
吟游诗人理智鱼
技能pythonvisualstudiopycharm爬虫数据挖掘数据可视化
在参与正大杯市场调研大赛的准备过程中,我被分配到了文本挖掘及后续可视化的工作任务,其中就包括爬取微博博文内容数据、以及将内容可视化(生成云图)接下来我将以生成词云图为目标,介绍实现方法以及煮波的一些心路历程。一、微博数据爬取(另外介绍)二、生成词云图从微博爬取的数据会以csv的格式存放在项目文件中,目前我采用的方法是将csv文件转为excel,再对excel中的文本进行词频统计,从而生成词云图,将
- AI Agent成大模型落地“接盘侠”,百度、智谱AI等国内巨头齐发力,你了解多少?
RPAdaren
人工智能百度
在AI领域,大模型的热潮已经持续了一段时间,但许多人发现,尽管讨论声不断,真正火起来的新应用却寥寥无几。然而,有一个领域却异常火热,那就是AIAgent(智能体)。从2023年开始,这个词频繁出现在AI大佬们的口中,甚至被微软创始人比尔·盖茨誉为将颠覆软件行业和人机交互方式的存在。他曾在2023年11月13日撰写千字博文,预言谁能主宰个人助理Agent,谁就能让人们不再依赖搜索网站、生产力网站和亚
- 你被卷了吗?地产人
地产人观察日记
最近有点儿文思泉涌,更文积极性大增,主要是有自己想说的话题!内卷,本是一个社会学术语,现在用来代指非理性的内部竞争!最开始这个词频繁的用在互联网行业中,近一段时间开始蔓延到各行各业。01学历内卷在2020年地产行业人才报告中,地产行业本科学历人才占比67.06%,硕士及以上学历人才占11.4%。而在2018年的同类数据中,地产行业本科以上学历占比76%,本科学历64%,硕士学历10%,博士及博士后
- Python实现对哈利波特小说单词统计
胜天半月子
Python基础及应用python字符串列表正则表达式
文章目录要求一、打开文件正则表达式spilt()函数实例二、词频统计三、单词排序四、输出或写入文件python文件写入要求对HarryPotter5.txt英文小说进行词频统计,统计出前二十个频率最高的单词,并打印输出或写入文件一、打开文件打开文件并将单词中非单词字符用空格代替代码:#读取小说内容fp=open('HarryPotter5.txt')content=fp.read()#所有标点符号
- 三国演义python分析系统_Python之三国演义(上)
weixin_40002692
三国演义python分析系统
一、设计实现详细说明1.1任务详细描述以中国四大名著之一——《三国演义》为蓝本,结合python数据分析知识进行本次的文本分析。《三国演义》全书共120回。本次的分析主要基于统计分析、文本挖掘等知识。1.2设计思路详细描述数据准备、数据预处理、分词等全书各个章节的字数、词数、段落等相关方面的关系整体词频和词云的展示全书各个章节进行聚类分析并可视化,主要进行了根据IF-IDF的系统聚类和根据词频的L
- 01-30
姬汉斯
今天看的是关于文档识别和分类的处理案例。利用多项式贝叶斯公式计算TF-IDF值,以此计算出文档中的词频,文档频率等数据属性,TFIDFVectorizer类用于进行整理,NTLK包进行标注处理,计算文档中各个字符的权重,通过分类器进行分类处理。Sklearn在其中依然有巨大作用,还在熟悉其特性
- python机器学习算法--贝叶斯算法
在下小天n
机器学习python机器学习算法
1.贝叶斯定理在20世纪60年代初就引入到文字信息检索中,仍然是文字分类的一种热门(基准)方法。文字分类是以词频为特征判断文件所属类型或其他(如垃圾邮件、合法性、新闻分类等)的问题。原理牵涉到概率论的问题,不在详细说明。sklearn.naive_bayes.GaussianNB(priors=None,var_smoothing=1e-09)#Bayes函数·priors:矩阵,shape=[n
- Lucece评分公式OKapi BM25原理解析(中)
双人余_先生
背景:延续上篇写了TF/IDF的公式解析,本篇为BM25解析简单介绍。BM25起源于概率相关性模型,而不是矢量空间模型,但是该算法与Lucene的实际评分功能有很多共同点。两者都使用Term词频率,逆文档频率和字段长度归一化,但是每个因素的定义都略有不同。与其详细解释BM25公式,不如将重点放在BM25提供的实际优势上。BM25是一个词袋检索功能,它基于每个文档中出现的查询词对一组文档进行排名,而
- 【Python机器学习】NLP词频背后的含义——隐性语义分析
zhangbin_237
Python机器学习python机器学习自然语言处理人工智能开发语言
隐性语义分析基于最古老和最常用的降维技术——奇异值分解(SVD)。SVD将一个矩阵分解成3个方阵,其中一个是对角矩阵。SVD的一个应用是求逆矩阵。一个矩阵可以分解成3个最简单的方阵,然后对这些方阵求转置后再把它们相乘,就得到了原始矩阵的逆矩阵。它为我们提供了一个对大型复杂矩阵求逆的捷径。SVD适用于桁架结构的应力和应变分析等机械工程问题,它对电气工程中的电路分析也很有用,它甚至在数据科学中被用于基
- 文本分析之关键词提取(TF-IDF算法)
SEVEN-YEARS
tf-idf
键词提取是自然语言处理中的一个重要步骤,可以帮助我们理解文本的主要内容。TF-IDF(TermFrequency-InverseDocumentFrequency)是一种常用的关键词提取方法,它基于词频和逆文档频率的概念来确定词语的重要性。准备工作首先,我们需要准备一些工具和库,包括Pandas、jieba(结巴分词)、sklearn等。Pandas:用于数据处理。jieba:用于中文分词。skl
- spark应用程序转换_4.Spark特征提取、转换和选择 - 简书
weixin_39956182
spark应用程序转换
在实际机器学习项目中,我们获取的数据往往是不规范、不一致、有很多缺失数据,甚至不少错误数据,这些数据有时又称为脏数据或噪音,在模型训练前,务必对这些脏数据进行处理,否则,再好的模型,也只能脏数据进,脏数据出。这章我们主要介绍对数据处理涉及的一些操作,主要包括:特征提取特征转换特征选择4.1特征提取特征提取一般指从原始数据中抽取特征。4.1.1词频-逆向文件频率(TF-IDF)词频-逆向文件频率(T
- 自然语言处理系列三十七》词频-逆文档频率TF-IDF》Java代码实现
陈敬雷-充电了么-CEO兼CTO
自然语言处理javanlpaiAI编程chatgptgpt
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列三十七Java代码实现词频-逆文档频率(TF-IDF)TF-IDF的Python代码实现总结自然语言处理系列三十七Java代码实现词频-逆文档频率(TF-IDF)上篇文章讲了算法原理,这篇文章通过Java实现TF-IDF,再
- 《倒排索引》
刚满十八工地搬砖
数据结构
1、了解倒排索引的基本概念1.1、倒排索引是什么倒排索引是一种用于全文搜索的数据结构,它将文档中的每个单词映射到包含该单词的所有文档的列表中,然后用该列表替换单词。因此,倒排索引在文本搜索和信息检索中广泛应用,如搜索引擎、网站搜索、文本分类等场景中。具体来说,一个倒排索引包含一个词语词典和每个词语对应的倒排列表。倒排列表中记录了包含该词语的所有文档的编号、词频等信息。这让我们能够在O(1)的时间内
- gensim 实现 TF-IDF
木下瞳
NLP大模型tf-idf人工智能
目录介绍代码介绍TF-IDF(TermFrequency-InverseDocumentFrequency)含义:TF(TermFrequency):词频,是指一个词语在当前文档中出现的次数。它衡量的是词语在文档内部的重要性,直观上讲,一个词语在文档中出现越频繁,表明它对该文档内容描述的贡献越大。IDF(InverseDocumentFrequency):逆文档频率,是一个词语在整个文档集合中的稀
- 《Java 简易速速上手小册》第3章:Java 数据结构(2024 最新版)
江帅帅
《Java简易速速上手小册》javaspringbootspring数据结构算法人工智能智能合约
文章目录3.1数组和字符串-数据的基本营地3.1.1基础知识3.1.2重点案例:统计文本中的单词频率3.1.3拓展案例1:寻找数组中的最大元素3.1.4拓展案例2:反转字符串3.2集合框架概述-数据小队的训练场3.2.1基础知识3.2.2重点案例:学生信息管理系统3.2.3拓展案例1:任务调度器3.2.4拓展案例2:产品库存管理3.3泛型和迭代器-数据小队的特种兵3.3.1基础知识3.3.2重点案
- 使用Spacy做中文词频和词性分析
风暴之零
nlppython
文章目录1、为什么选择Spacy库2、Spacy库模型比较3、代码3.1、需要注意的问题3.2、整体代码如下:使用Spacypython库做中文词性和词频分析,读取word并给出其中每个词的词频和词性,写入excel表。1、为什么选择Spacy库相比与NLTK这个库更快和更准2、Spacy库模型比较2.1、zh_core_web_trf模型,模型大,准确性高。需要确保你的Spacy版本是最新的,因
- 零元薅羊毛是真的吗?零元薅羊毛群背后的真相揭秘
金钱保卫科长
在当今的互联网世界,"零元薅羊毛"一词频繁出现在各大社交平台与论坛之中。许多人被其看似“免费获取商品”的诱惑所吸引,纷纷加入各类“零元薅羊毛群”。然而,零元薅羊毛究竟是天上掉下的馅饼,还是一场精心设计的骗局呢?让我们深入剖析其中的真相。【独家福利】主流网购平台无门槛红包+大额优惠券入口https://www.chaojiyouhui零元薅羊毛活动解析零元薅羊毛通常是指通过参与商家或平台组织的特定优
- SPSSAU【文本分析】|我的词库
spssau
人工智能文本分析文本挖掘
我的词库文本分析时,可能涉及到一些新词,比如‘内卷’,这个词很可能在词典中并未出现过,词库也不认识它。但研究者自己认识它,此时可将该词纳入到新词词库中,让系统统计词频等信息时也对该词进行统计。当然还有一些停用词,比如‘好了’,这个词没有实际的意义没有统计词频等必要,此时可对该词设置为停用词。除此之外,还可设置情感词,比如:‘元宇宙’可能是个正向词(也可能是负向情感,由研究者决定),那么可自主设置其
- SPSSAU【文本分析】|文本聚类
spssau
支持向量机机器学习人工智能
SPSSAU共提供两种文本聚类方式,分别是按词聚类和按行聚类。按词聚类是指将需要分析的关键词进行聚类分析,并且进行可视化展示,即针对关键词进行聚类,此处关键词可以自由选择。按行聚类分析是指针对以‘行’为单位进行聚类分析,将原始文本中多行数据聚为几个类别,并且可将具体聚类类别信息进行下载等。按词聚类分析按词聚类分析操作如下图:默认情况下,系统会将词频靠前的20个关键词提取,并且得到其词向量值,并且其
- Elasticsearch实战阅读笔记
Wyat,sahar
elasticsearchelasticsearch
firstday1.默认情况所有数据全部索引2.es索引为倒排序索引.3.计算文档相关性得分的算法是TF-IDF词频-逆文档频率4.elasticsearch不支持事务!!5.索引文本"bicyclerace"分析步骤将产生"bicycle""race""cycling""racing"(还有现代分词..nb)6.面向文档,意味着索引和搜索数据的最小单位是文档7.文档是无模式的理解索引相当于库27
- ES实战-相关性搜索
wzerofeng
ES实战elasticsearchlinux
ES打分机制1.TF-IDF词频-逆文档频率2.OkapiBM253.随机性分歧-DFR相似度4.基于信息-IB相似度5.LMDirichlet相似度6.LMJelinekMercer相似度解释一个查询的结果集curl-XPOST'localhost:9200/get-together/_search?pretty'-H'Content-Type:application/json'-d'{"que
- 大模型Tokenizer知识
lichunericli
LLM人工智能语言模型
Byte-PairEncoding(BPE)如何构建词典?Byte-PairEncoding(BPE)是一种常用的无监督分词方法,用于将文本分解为子词或字符级别的单位。BPE的词典构建过程如下:初始化词典:将每个字符视为一个初始的词。例如,对于输入文本"helloworld",初始词典可以包含{'h','e','l','o','w','r','d'}。统计词频:对于每个词,统计其在文本中的频率。例
- pandas:统计某一列字符串中各个word出现的频率
JasonLiu1919
pandaspythonpandas数据分析
更多、更及时内容欢迎留意微信公众号:小窗幽记机器学习背景某一列是字符串,想要统计该列字符串分词结果后各词出现的词频。示例代码#-*-coding:utf-8-*-#@Time:2022/2/134:18下午#@Author:JasonLiu#@FileName:test.pyimportpdbimportpandasaspdimportnumpyasnpdf=pd.DataFrame([[1044
- 【更新】企业数字化转型-年度报告175个词频、文本统计
samLi0620
大数据
数据说明:这份数据含数字化转型175个词频、各维度水平,保留2000-2021年数据。参考吴非、赵宸宇两位老师做法,根据上市公司年报文本,整理数字化转型175个词频数据,希望对大家有所帮助。参考管理世界中吴非(2021)的做法,对人工智能技术、大数据技术、云计算技术、区块链技术、数字技术运用五个维度76个数字化相关词频进行统计。参考财贸经济中赵宸宇(2021)的做法,对数字技术应用、互联网商业模式
- 基于jieba库实现中文词频统计
kongxx
要实现中文分词功能,大家基本上都是在使用jieba这个库来实现,下面就看看怎样实现一个简单文本分词功能。安装python的工具,安装当然是使用pip安装了。pipinstalljieba使用先看一个小例子,下面的代码是从一个文本文件中分词并统计出现频率最高的10个单词,并打印到控制台。#!/usr/bin/envpython#-*-coding:utf-8-*-importjiebaimportj
- 2022-08-01
清清子衿_60a8
一边工作一边担心会不会死亡,没错,这就是我刚才和朋友聊的话题。我的工作是在户外顶着酷热干活,说了很多次了,有点老生常谈,不过还是要交代下。今天热得有点过分,一早五点半干活就汗流不止,那会儿就感觉今天会是个爆天,但我还是低估了今天的热,有两个工友十点钟就因为受不了而早早下班去休息了,我也是头昏脑胀,心跳加快。热射病这个最近火爆全网的词频频闪现在脑海,“会不会得热射病呢?”。这个疑问一直挥之不去,哲学
- 【简单文本相似度分析】( LCS | Trie | DP | 词频统计 | hash | 单词分割 )
XNB's Not a Beginner
算法哈希算法算法c++数据结构链表hashtable
两个文本的相似度的指标有很多,常见的有词袋分析,词向量余弦,LCS(子串,子序列),Jaccard相似度分析(单词集合的对称差和最小全集比值),编辑距离等等我在自己的程序里只定义两个指标:1单词重复度2最长公共子序列长度首先用c++builtin的字符输入流对象istringstream做单词分割然后用我自己写的patriacatrie树当作词袋,把词量小的string做映射集合(类似重链合并),
- 【TRIE字典树实现:400行】(模糊匹配 | AC自动机 | 多模式匹配 | 串排序 | 词频计数 | 相似度分析 | RAII模式 | 前缀比较 )
XNB's Not a Beginner
算法语言特性ModernCppADT数据结构实现c++算法开发语言哈希算法图论数据结构链表
目录程序测试[insert_erase_countDEMO]插入测试【ACAutomiton|MultipatternmatchingDEMO】AC自动机|多模式匹配测试【RecursivetdeepcopyconstructDEMO】多叉树的递归深拷贝测试【stringsortDEMO】串的非比较排序测试【fuzzypatternmatchingDEMO】模糊匹配测试【Similarityana
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一