- 科学的第五范式:人工智能如何重塑发现之疆
田园Coder
人工智能科普人工智能科普
在人类探索未知的壮阔史诗中,科学方法的演进如同照亮迷雾的灯塔。从基于经验的第一范式(描述自然现象),到以理论推演为核心的第二范式(牛顿定律、麦克斯韦方程),再到以计算机模拟为标志的第三范式(气候模型、分子动力学),直至以大数据挖掘为驱动的第四范式(基因组学、高能物理),每一次范式跃迁都极大地拓展了认知的疆界。如今,我们正站在一个更恢弘转折的门槛上——第五范式:人工智能驱动的科学(AIforScie
- AI人工智能领域多智能体系统:推动智能医疗的精准诊断
AI人工智能领域多智能体系统:推动智能医疗的精准诊断关键词:人工智能、多智能体系统、智能医疗、精准诊断、医疗数据摘要:本文聚焦于AI人工智能领域中的多智能体系统在智能医疗精准诊断方面的应用。首先介绍了多智能体系统和智能医疗精准诊断的背景知识,包括目的、预期读者等。接着阐述了多智能体系统的核心概念及其与智能医疗精准诊断的联系,并给出了相应的文本示意图和Mermaid流程图。详细讲解了多智能体系统用于
- Python 解析 AI 在企业智能数据分析中的落地案例
动态链接者Bw
人工智能python数据分析
```htmlPython解析AI在企业智能数据分析中的落地案例Python解析AI在企业智能数据分析中的落地案例随着人工智能(AI)技术的飞速发展,越来越多的企业开始将AI应用于数据分析领域,以提升决策效率和业务洞察力。Python作为一门功能强大的编程语言,因其丰富的库支持和易用性,在AI驱动的数据分析中扮演着重要角色。本文将通过几个实际案例,探讨Python如何帮助企业实现智能数据分析。案例
- Python 解析 AI 在金融风控中的应用案例
浮世清欢ai
python人工智能开发语言
```htmlPython解析AI在金融风控中的应用案例Python解析AI在金融风控中的应用案例在当今快速发展的金融科技领域,人工智能(AI)的应用正在改变传统的金融风险管理方式。通过使用Python编程语言和各种机器学习库,金融机构能够更准确地识别潜在风险,提高决策效率。本文将探讨几个具体的AI在金融风控中的应用案例,并展示如何利用Python实现这些功能。案例一:信用评分模型信用评分是金融风
- 视觉表征和多模态融合
一只齐刘海的猫
语言模型
视觉表征和多模态融合是当前人工智能领域的研究热点,特别是在计算机视觉和自然语言处理的交叉领域。视觉表征是指将图像或视频信息转化为模型可以处理的向量形式,而多模态融合则是将不同类型的数据(如视觉、文本、音频等)进行整合,以实现更全面、准确的信息理解和处理。视觉表征(VisualRepresentation)目的:将图像或视频数据转化为深度学习模型可以理解的特征向量。方法:卷积神经网络(CNN):传
- AI时代的微改变
测试@小成同学
人工智能人工智能
改变1:新闻行业AI主播正式上岗改变2:手机制造商李健称荣耀不再是智能手机制造商改变3:汽车制造商马斯克:特斯拉其实不是一家汽车制造商,而是一家人工智能机器人公司。特斯拉的终极目标是成为一家生产机器人的公司,包括车形机器人和人形机器人。强者拥抱变化,弱者畏惧变化,顺应时代洪流。
- Deepoc 大模型:无人机行业的智能变革引擎
在科技飞速发展的当下,无人机行业正经历着一场深刻的变革。从最初简单的遥控飞行设备,到如今广泛应用于航拍、物流、农业、测绘等众多领域的智能飞行器,无人机的功能不断拓展,应用场景日益丰富。而在这场变革中,人工智能技术的融入无疑是最为关键的推动力量,尤其是大模型技术的兴起,为无人机行业带来了前所未有的发展机遇。其中,Deepoc大模型以其卓越的性能和强大的功能,正逐渐成为无人机行业垂直应用领域的一颗璀璨
- AI人工智能领域必备:AI芯片的关键作用
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构AI人工智能与大数据技术人工智能ai
AI人工智能领域必备:AI芯片的关键作用关键词:AI芯片、算力、神经网络、能效比、专用架构、异构计算、存算一体摘要:在人工智能高速发展的今天,从手机里的“语音助手”到马路上的“自动驾驶汽车”,从医院的“智能影像诊断”到工厂的“机器人流水线”,AI技术的落地离不开一个“幕后大功臣”——AI芯片。本文将用“快递分拣工厂”“人脑神经村”等生活案例,带你一步一步理解AI芯片的核心作用、工作原理和未来趋势,
- 大语言模型应用指南:谷歌 Gemini 简介
AI天才研究院
AI大模型企业级应用开发实战AI人工智能与大数据计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:谷歌Gemini简介关键词:大语言模型,Gemini,谷歌,人工智能,应用指南1.背景介绍近年来,人工智能领域取得了突破性进展,尤其是大语言模型(LargeLanguageModels,LLMs)的出现,彻底改变了我们与信息交互的方式。从最初的聊天机器人到如今的代码生成、文本创作等领域,LLMs展现出惊人的能力。谷歌作为科技巨头,一直走在人工智能研究的前沿。继BERT、LaMD
- 【EI+Scopus+Google Scholar三平台护航】2025年8-9月智能融合:计算建模、人工智能与物联网、机械制造与智能控制以及人工智能与数字化管理等领域的创新之旅
【EI+Scopus+GoogleScholar三平台护航】2025年8-9月智能融合:计算建模、人工智能与物联网、机械制造与智能控制以及人工智能与数字化管理等领域的创新之旅【EI+Scopus+GoogleScholar三平台护航】2025年8-9月智能融合:计算建模、人工智能与物联网、机械制造与智能控制以及人工智能与数字化管理等领域的创新之旅文章目录【EI+Scopus+GoogleSchol
- ART(Automatic Reasoning and Tool-use):自动推理与工具使用的革命性突破
引言在人工智能快速发展的今天,大语言模型(LLM)的能力边界正在不断被重新定义。ART(AutomaticReasoningandTool-use)技术作为一项革命性的突破,为AI系统提供了自动推理并使用外部工具的能力,这标志着我们正在迈向更加智能和实用的AI时代。什么是ART技术?ART是AutomaticReasoningandTool-use的缩写,它是一种让AI系统能够自动进行推理并调用外
- Prompt 精通之路(一)- AI 时代的新语言:到底什么是 Prompt?为什么它如此重要?
程序员阿超的博客
Prompt精通之路:从零基础到AI高效玩家人工智能promptPrompt新手指南提示词入门AI指令ChatGPTdeepseek
AI时代的新语言:到底什么是Prompt?为什么它如此重要?标签:#Prompt新手指南#提示词入门#AI指令#人工智能#ChatGPTPrompt精通之路:系列文章导航第一篇:AI时代的新语言:到底什么是Prompt?为什么它如此重要?第二篇:告别废话!掌握这4个黄金法则,让你的Prompt精准有效第三篇:像专业人士一样思考:Zero-Shot,Few-Shot和思维链(CoT)技巧详解第四篇:
- 循环神经网络(RNN):序列数据处理的强大工具
LNL13
rnn人工智能深度学习
在人工智能和机器学习的广阔领域中,处理和理解序列数据一直是一个重要且具有挑战性的任务。循环神经网络(RecurrentNeuralNetwork,RNN)作为一类专门设计用于处理序列数据的神经网络,在诸多领域展现出了强大的能力。从自然语言处理中的文本生成、机器翻译,到时间序列分析中的股票价格预测、天气预测等,RNN都发挥着关键作用。本文将深入探讨RNN的工作原理、架构特点、训练方法、常见类型以及其
- 深度解析生成式 AI:从技术原理到实战应用
LNL13
人工智能
一、生成式AI:重构数字内容生产范式(一)技术定义与核心价值生成式人工智能(GenerativeAI)是通过深度学习模型自动创造文本、图像、代码、视频等内容的技术体系,其核心在于从数据中学习概率分布并生成符合人类认知的输出。与传统判别式AI(如图像分类)不同,生成式AI实现了从"识别"到"创造"的跨越,典型应用包括:文本领域:ChatGPT对话系统、小说自动生成图像领域:MidJourney艺术创
- 解锁数据的秘密:用大型语言模型编织异构数据的交响乐
步子哥
智能涌现AGI通用人工智能语言模型人工智能自然语言处理
在数据的浩瀚海洋中,信息如同一座座孤岛,形态各异、语言不同。如何将这些分散的岛屿连接成一片大陆,为人工智能应用提供坚实的基础?这是数据工程师们长久以来的挑战。传统方法耗时费力,宛如手工编织一张巨大的网。而今,大型语言模型(LLMs)如同一股清风,带来了自动化整合的希望。本文将以通俗易懂的方式,深入探讨如何利用LLMs在数据工程中实现异构数据的提取与整合,聚焦于高等教育中学习障碍这一独特场景,揭示人
- 自动驾驶系列—加速自动驾驶系统开发:多型号SoC快速适配的最佳实践
学步_技术
自动驾驶自动驾驶人工智能机器学习SoC适配
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- 自动驾驶技术研发适用Infortrend普安存储IEC平台
Infortrend普安存储IEC私有云平台,轻松高效应用无人驾驶技术自动驾驶汽车(例如自动驾驶出租车、无人驾驶公交)和无人驾驶飞行器(UAV)依靠摄像头、物联网传感器、雷达、GPS采集的实时数据瞬间做出决策。自动驾驶系统作为核心部分,不间断分析环境条件,应对潜在风险,确保乘客和货物运输安全。Autopilot应用程序在开发和模拟中,大数据、AI(人工智能)、ML(机器学习)等技术能否高速发挥作用
- 通信技术以及5G和AI保障电网安全与网络安全
鲸 Blue
安全5G人工智能
摘要:电网安全是电力的基础,随着智能电网的快速发展,越来越多的ICT信息通信技术被应用到电力网络。本文分析了历史上一些重大电网安全与网络安全事故,介绍了电网安全与网络安全、通信技术与电网安全的关系以及相应的电网安全标准,分享了中国国家电网公司保障电网安全的相关措施和成功经验,并对5G、AI等新技术在电网安全和网络安全方面的创新和应用做了分析和展望。关键词:电网安全;网络安全;5G;人工智能引言从1
- 阿里云瑶池数据库 Data Agent for Meta 正式发布,让 AI 更懂你的业务!
数据库人工智能知识资讯
背景随着生成式人工智能(GenerativeAI)从概念验证迈向规模化商业落地,AIAgent已成为企业核心业务流程的重要组成部分。然而,当模型调用日益便捷时,核心痛点已不再是模型本身,而是集中在一个关键要素上:数据。AIAgent的落地瓶颈已从技术能力转向高质量、高相关性、安全合规的数据供给。企业面临的核心挑战在于:数据孤岛导致知识库分散,通用大模型难以理解专业业务传统数据管理依赖人工开发维护,
- Python入门Day1
Zonda要好好学习
Pythonpython开发语言
Python介绍Python的发展历程为什么叫PythonPython本来是蟒蛇的意思,用来象征写代码的程序员。因为相对于Java、C++等程序,Python非常简单,所以写Python也的程序员也象征“玩蛇”的程序员。Python的由来Python的历史也相对比较悠久,可以追溯到1990年,有数十年的发展历程,随着今年人工智能和数据挖掘的发展,Python飞速发展。ABC语言是一种语言和编程环境
- 基于Google Gemini 探索大语言模型在医学领域应用评估和前景
知来者逆
LLM语言模型搜索引擎人工智能Gemini大语言模型医疗健康医疗
概述近年来,大规模语言模型(LLM)在理解和生成人类语言方面取得了显著的飞跃,这些进步不仅推动了语言学和计算机编程的发展,还为多个领域带来了创新的突破。特别是模型如GPT-3和PaLM,它们通过吸收海量文本数据,已经能够掌握复杂的语言模式。人工智能技术的迅猛发展不断推动着LLM的进化,并加速了这一领域的专业创新。这些进步是随着模型规模的扩大、数据量的增加以及计算能力的提升而逐步实现的,其中许多尖端
- AI人工智能与自动驾驶的协同创新模式
AI大模型应用之禅
人工智能自动驾驶机器学习ai
AI人工智能与自动驾驶的协同创新模式关键词:人工智能、自动驾驶、协同创新、深度学习、计算机视觉、传感器融合、决策系统摘要:本文深入探讨了人工智能与自动驾驶技术的协同创新模式。我们将从基础概念出发,逐步分析AI如何赋能自动驾驶系统,涵盖感知、决策和控制三大核心模块。文章将通过生动的比喻解释复杂技术原理,展示实际代码实现,并探讨未来发展趋势和挑战。通过这篇文章,读者将全面理解AI与自动驾驶如何相互促进
- 大语言模型应用指南:Gemini简介
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍自然语言处理(NLP)一直是人工智能领域的热门话题之一。在NLP中,语言模型是一个重要的概念,它可以用来预测下一个单词或字符的概率。近年来,随着深度学习技术的发展,大型语言模型的研究和应用也越来越受到关注。其中,Gemini是一种新型的大型语言模型,它在多项任务上取得了优异的表现。本文将介绍Gemini的核心概念、算法原理、数学模型和公式、项目实践、实际应用场景、工具和资源推荐、未来发
- 深入了解Transformer模型及其优缺点
目录前言1Transformer结构特点1.1注意力机制(Self-Attention)1.2编码器-解码器架构1.3位置编码和基于注意力的损失函数2Transformer模型优缺点分析2.1Transformer模型的优点2.2Transformer模型的缺点3应用领域结语前言在当今人工智能领域,自然语言处理的关键问题之一是解决文本理解和生成中的挑战。传统的循环神经网络虽然在处理序列数据方面取得
- Python环境搭建:从零开始配置开发环境
码农垦荒笔记
Pythonpython开发语言经验分享
一、为什么你需要学会搭建Python环境?1.Python是什么?它能做什么?想象Python就像一把“万能工具刀”——无论是想做个网站、分析数据、写个小游戏,还是研究人工智能,它都能帮你搞定。比如:豆瓣、Instagram的后台用了Python科学家用Python分析实验数据连ChatGPT的开发者也会用到Python库2.为什么环境配置这么重要?举个生活例子就像做菜前要先准备好锅和调料,写Py
- 如何学习才能更好地理解人工智能工程技术专业和其他信息技术专业的关联性?
人工智能教学实践
python编程实践人工智能学习人工智能
要深入理解人工智能工程技术专业与其他信息技术专业的关联性,需要跳出单一专业的学习框架,通过“理论筑基-实践串联-跨学科整合”的路径构建系统性认知。以下是分阶段、可落地的学习方法:一、建立“专业关联”的理论认知框架绘制知识关联图谱操作方法:用XMind或Notion绘制思维导图,以AI为中心,辐射关联专业的核心技术节点。例如:AI(机器学习)├─数据支撑:大数据技术(Hadoop/Spark)+数据
- 数据分析的智能化变革:AI人工智能
AI大模型应用工坊
数据分析人工智能数据挖掘ai
数据分析的智能化变革:AI人工智能关键词:数据分析、智能化变革、AI人工智能、机器学习、深度学习摘要:本文深入探讨了数据分析领域借助AI人工智能实现的智能化变革。详细阐述了相关核心概念、算法原理、数学模型,通过具体的项目实战展示了AI在数据分析中的应用,介绍了实际应用场景以及可利用的工具和资源。同时对数据分析智能化变革的未来发展趋势与挑战进行了总结,并解答了常见问题,为读者全面了解这一变革提供了丰
- AI大模型定义与应用概述
水云桐程序员
人工智能ai大模型
AI大模型,也成为基础模型或大规模预训练模型,指的是在海量数据上通过深度学习技术进行预训练的超大型人工智能模型。常见类型大型语言模型:这是目前最主流和成熟的大模型类型。擅长文本生成、文本理解、机器翻译、对话系统、代码生成与解释等。代表案例:GPT系列、通义千问、文心一言、KimiChat等。多模态大模型:擅长同时处理和生成多种模态的信息,如文生图、图生文、图文问答、视频理解、音频生成等。代表案例:
- 浅析基于深度学习算法的日语OCR技术原理及其应用场景
AI人工智能+
TEL18600524535ocr文字识别人工智能
在全球数字化进程加速的今天,日语作为世界第九大使用语言,其文字处理的自动化需求日益凸显,日语OCR技术应运而生。中科逸视日文OCR技术是一款基于先进人工智能技术的专业光学字符识别(OCR)解决方案,专门针对日语文本的数字化需求设计开发。能够将纸质文档、图片中的日文内容快速准确地转换为可编辑、可搜索的电子文本,大幅提升日文资料的处理效率,为企业国际化运营和个人日语学习提供强有力的技术支持。技术原理中
- 浅析通用文字识别OCR技术的工作过程及其应用场景
AI人工智能+
TEL18600524535人工智能ocr计算机视觉图像处理文字识别
通用文字识别技术作为人工智能领域的重要分支,正深刻地改变着人们的生活与工作方式。通用文字识别技术基于光学字符识别(OCR)技术发展而来,其核心原理是通过对图像中文字的特征提取与分析,将其转化为计算机能够理解和处理的文本信息。这一过程涉及多个关键步骤:图像预处理:输入的图片可能存在光照不均、倾斜、模糊等问题,预处理阶段会对图像进行灰度化、降噪、二值化、倾斜校正等操作,以提高文字的清晰度和可识别性。例
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen