- matlab mle 优化,MLE+: Matlab Toolbox for Integrated Modeling, Control and Optimization for Buildings...
Simon Zhong
matlabmle优化
摘要:FollowingunilateralopticnervesectioninadultPVGhoodedrat,theaxonguidancecueephrin-A2isup-regulatedincaudalbutnotrostralsuperiorcolliculus(SC)andtheEphA5receptorisdown-regulatedinaxotomisedretinalgan
- 【论文速读】| SEAS:大语言模型的自进化对抗性安全优化
云起无垠
论文速读/精读语言模型安全人工智能
本次分享论文:SEAS:Self-EvolvingAdversarialSafetyOptimizationforLargeLanguageModels基本信息原文作者:MuxiDiao,RumeiLi,ShiyangLiu,GuogangLiao,JingangWang,XunliangCai,WeiranXu作者单位:北京邮电大学,美团关键词:大语言模型(LLM),对抗安全,红队,模型优化,自
- Hexagon_DSP_User_Guide(2)
weixin_38498942
tools简介dsp开发开发语言tool
Hexagon_DSP_User_Guide(2)4.2Guidelinesforassemblyandintrinsicoptimization4.2.1Maximizeinstructionsperpacket4.2.1.1Scalarinstructionpackingrules4.2.1.2HVXpackingrules4.2.2Understandandreducestalls4.2.2
- DAG (directed acyclic graph) 作为大数据执行引擎的优点
joeywen
分布式计算StormSparkStorm杂谈StormsparkDAG
TL;DR-ConceptuallyDAGmodelisastrictgeneralizationofMapReducemodel.DAG-basedsystemslikeSparkandTezthatareawareofthewholeDAGofoperationscandobetterglobaloptimizationsthansystemslikeHadoopMapReducewhicha
- 【论文简介】Circle Loss: A Unified Perspective of Pair Similarity Optimization
萝莉狼
machinelearningcirclelossdeepfeaturelearning
CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization旷世cvpr2020的一篇文章,站在更高的视角,统一了deepfeaturelearning的两大基础loss:基于class-levellabel的loss(如softmax+crossentropy)和基于pair-wiselabel的loss(如tripletloss),指出了
- Circle Loss: A Unified Perspective of Pair Similarity Optimization简要阅读笔记
dailleson_
机器学习机器学习数据挖掘神经网络深度学习自然语言处理
1.背景常见的分类损失函数可以概括为减小类内距离sns_nsn,增大类间距离sps_psp。优化目标如下:min(sn−sp)min(s_n-s_p)min(sn−sp)2.存在的问题优化不够灵活。优化目标对sns_nsn和sps_psp的惩罚作用是相等的,二者的系数都为1。例如{sn,sp}={0.1,0.5}\{s_n,s_p\}=\{0.1,0.5\}{sn,sp}={0.1,0.5}。这个
- [论文笔记]Circle Loss: A Unified Perspective of Pair Similarity Optimization
愤怒的可乐
#文本匹配[论文]论文翻译/笔记自然语言处理论文阅读人工智能
引言为了理解CoSENT的loss,今天来读一下CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization。为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。这篇论文从对深度特征学习的成对相似度优化角度出发,旨在最大化同类之间的相似度sps_ps
- 探索智能边缘计算:Game-Theoretic-Deep-Reinforcement-Learning
瞿旺晟
探索智能边缘计算:Game-Theoretic-Deep-Reinforcement-LearningGame-Theoretic-Deep-Reinforcement-LearningCodeofPaper"JointTaskOffloadingandResourceOptimizationinNOMA-basedVehicularEdgeComputing:AGame-TheoreticDRL
- 大模型对齐方法笔记一:DPO及其变种IPO、KTO、CPO
chencjiajy
深度学习笔记机器学习人工智能
DPODPO(DirectPreferenceOptimization)出自2023年5月的斯坦福大学研究院的论文《DirectPreferenceOptimization:YourLanguageModelisSecretlyaRewardModel》,大概是2023-2024年最广为人知的RLHF的替代对齐方法了。DPO的主要思想是在强化学习的目标函数中建立决策函数与奖励函数之间的关系,以规避
- day59-graph theory-part09-8.30
bbrruunnoo
python开发语言算法
tasksfortoday:1.digkstra堆优化版47.参加科学大会2.bellman_ford算法94.城市间货物运输I---------------------------------------------------------------------------------1.dijkstra堆优化版Thisisanoptimizationforthevanilladijkstra
- python实现蚁群算法
孺子牛 for world
python算法开发语言
蚁群算法(AntColonyOptimization,ACO)是一种模拟蚂蚁觅食行为的启发式算法,常用于解决优化问题,如旅行商问题(TSP)、调度问题等。这里,将提供一个简化的蚁群算法实现,用于解决旅行商问题(TSP)。蚁群算法(ACO)解决TSP问题的基本步骤:初始化:设置蚂蚁数量、信息素挥发系数、信息素增加强度系数等参数,初始化信息素矩阵。构建解:每只蚂蚁随机选择起点,根据信息素浓度和启发式信
- 理解PyTorch版YOLOv5模型构架
LabVIEW_Python
一个深度学习模型,可以拆解为:模型构架(ModelArchitecture):下面详述激活函数(ActivationFunction):YOLOv5在隐藏层中使用了LeakyReLU激活函数,在最后的检测层中使用了Sigmoid激活函数,参考这里优化函数(OptimizationFunction):YOLOv5的默认优化算法是:SGD;可以通过命令行参数更改为Adam损失函数(LossFuncti
- mojo InlinedString实现及详解
启航学途
Mojomojo
inlined_stringImplementsastringthathasasmall-stringoptimizationwhichavoidsheapallocationsforshortstrings.InlinedStringAstringthatperformssmall-stringoptimizationtoavoidheapallocationsforshortstrings.A
- 【HTML】语义化
全宇宙最最帅气的哆啦A梦小怪兽
html前端
根据内容的结构选择合适的标签优点增加代码可读性,结构清晰,便于开发和维护;对机器友好,文字表现力丰富,有利于SEO。SEO(SearchEngineOptimization)是搜索引擎优化,为了让⽤户在搜索和⽹站相关的关键词的时候,可以使⽹站在搜索引擎的排名尽量靠前,从⽽增加流量。方便设备解析(如盲⼈阅读器等),可⽤于智能分析;在没有CSS样式下,⻚⾯也能呈现出很好地内容结构、代码结构。常见的语义
- Introduction to linear optimization 第二章全部课后题答案
心态与习惯
数学优化linearoptimizationintroduction答案课后题
费了好长时间,终于把这本经典理论教材第二章的课后题做完了。大部分都是证明题,很多都是比较有难度的。不少题我参考了网上找到的一些资料的思路,但是有一些题目我觉得这些网上找到的答案也不太好,自己修正完善了下,少部分题目自己独立完成。我把答案放在一个Jupyterbook上,见链接:第二章答案
- 寻参算法之蜘蛛猴优化算法
Network_Engineer
机器学习启发式算法算法深度学习人工智能机器学习
蜘蛛猴优化算法(SpiderMonkeyOptimization,SMO)来历蜘蛛猴优化算法(SpiderMonkeyOptimization,SMO)是受蜘蛛猴觅食行为启发的一种群体智能优化算法。该算法通过模拟蜘蛛猴在森林中觅食的行为,解决复杂的优化问题。自然界中的原型在自然界中,蜘蛛猴在觅食时会通过跳跃和移动寻找食物。蜘蛛猴群体通过信息共享和合作行为,能够高效地找到食物源。SMO通过模拟这一行
- Go 1.22在性能方面有哪些提升?
Toormi
Golanggolang开发语言后端
Go1.22版本在性能方面进行了多项优化,主要包括以下几个方面:1.内存优化CPU性能提升:Go运行时的内存优化使得CPU性能提高了1-3%。这一改进不仅减少了大多数Go程序的内存开销约1%,还提升了整体运行效率[2]。2.Profile-GuidedOptimization(PGO)改进的PGO:Go1.22继续改进了在Go1.21中引入的PGO功能,特别是在接口方法调用的静态调度方面。通过更好
- Go 1.21在性能方面有哪些提升?
Toormi
Golanggolang开发语言后端
Go1.21版本在性能方面取得了多项重要进展,主要体现在以下几个方面:1.Profile-GuidedOptimization(PGO)Go1.21正式推出了PGO功能,使用PGO构建的Go程序性能通常可提升2-7%[2][5]。编译器本身也采用了PGO优化,使得编译速度提高了2-4%[2][3]。2.垃圾回收优化通过调优垃圾回收器,某些应用程序的尾部延迟可减少高达40%[3]。3.其他性能改进在
- 路径优化算法 | 基于蚁群的城市路径优化算法应用及其Matlab实现
算法如诗
路径优化算法(PathOptimization)算法matlab路径优化算法
蚁群算法(AntColonyOptimization,ACO)是一种模拟自然界中蚂蚁觅食行为的优化算法,用于解决如旅行商问题(TSP)等组合优化问题。在蚁群算法中,每只蚂蚁在搜索路径时都会释放信息素,并根据信息素浓度和其他启发式信息来选择下一个节点。随着时间的推移,较短的路径上累积的信息素会更多,从而吸引更多的蚂蚁,最终找到最优路径。在城市路径优化问题中,蚁群算法可以用于找到连接多个城市的最短路径
- 【改进算法】【IHAOAVOA】天鹰优化算法和非洲秃鹫混合优化算法
科研工作站
智能算法算法智能算法天鹰优化算法非洲秃鹫算法
目录1主要内容IHAOAVOA流程图主要创新点2部分代码3程序结果4下载链接1主要内容该程序复现《IHAOAVOA:AnimprovedhybridaquilaoptimizerandAfricanvulturesoptimizationalgorithmforglobaloptimizationproblems》,天鹰优化算法(AO)和非洲秃鹫算法(AVOA)各有优势:AO具有强大的全局勘探能力
- Introduction CMU最优控制16-745超详细学习笔记
我爱科研00
线性代数动态规划
CMU最优控制16-745超详细学习笔记背景跌跌撞撞入坑Optimization-basedMotionPlanning和OptimalControl已经大半年啦,这大半年来迷迷糊糊看了不少相关资料和论文,想借这个机会来整理一下相关的内容,也算是给自己写论文理清一下思路。去年年底做一个移动机械臂移动操作mobilemanipulation课题看了ETHRSL开源框架OCS2(OptimalCont
- 4.SEO
好好学习_fighting
HTMLhtml
SEO经典真题请描述下SEO中的TDK?什么是SEO?SEO由英文SearchEngineOptimization缩写而来,中文意译为“搜索引擎优化”。其实叫做针对搜索引擎优化更容易理解。它是指从自然搜索结果获得网站流量的技术和过程,是在了解搜索引擎自然排名机制的基础上,对网站进行内部及外部的调整优化,改进网站在搜索引擎中的关键词自然排名,获得更多流量,从而达成网站销售及品牌建设的目标。如何进行S
- 10 中科院1区期刊优化算法|基于开普勒优化-卷积-双向长短期记忆网络-注意力时序预测Matlab程序KOA-CNN-BiLSTM-Attention
机器不会学习CSJ
时间序列预测算法网络matlabcnnlstm深度学习
文章目录一、开普勒优化算法二、CNN卷积神经网络三、BiLSTM双向长短期记忆网络四、注意力机制五、KOA-CNN-BiLSTM-Attention时间序列数据预测模型六、获取方式一、开普勒优化算法基于物理学定律的启发,开普勒优化算法(KeplerOptimizationAlgorithm,KOA)是一种元启发式算法,灵感来源于开普勒的行星运动规律。该算法模拟行星在不同时间的位置和速度,每个行星代
- 06基于WOA-CNN-BiLSTM-Attention鲸鱼优化-卷积-双向长短时记忆-注意力机制的数据分类算法
机器不会学习CSJ
数据分类专栏cnn分类深度学习lstmmatlab启发式算法数据分析
基于WOA-CNN-BiLSTM-Attention鲸鱼优化-卷积-双向长短时记忆-注意力机制的数据分类算法鲸鱼智能优化基本原理鲸鱼智能优化算法(WhaleOptimizationAlgorithm,WOA)是一种基于自然界中的鲸鱼群体行为而提出的全局优化算法。该算法由莫扬(SeyedaliMirjalili)于2016年提出,其灵感来源于鲸鱼群体的捕猎行为和社交行为。在WOA算法中,每个解都被看
- 07基于WOA-CNN-BiLSTM-Attention鲸鱼优化-卷积-双向长短时记忆-注意力机制的时间序列预测算法
机器不会学习CSJ
时间序列预测cnn算法人工智能
文章目录鲸鱼优化算法CNN卷积神经网络BiLSTM双向长短期记忆网络Attention注意力机制WOA-CNN-BiLSTM-Attention鲸鱼优化-卷积-双向长短时记忆-注意力机制数据展示代码程序实验结果获取方式鲸鱼优化算法鲸鱼优化算法(WhaleOptimizationAlgorithm,WOA)是一种启发式优化算法,灵感来源于座头鲸的捕食行为。该算法最早由SeyedaliMirjalil
- 基于WOA优化CNN-LSTM-Attention的回归或时序算法,包含多种CNN-LSTM算法进行对比|Matlab
机器不会学习CSJ
算法深度学习
01基于WOA优化CNN-LSTM-Attention的回归或时序算法,包含多种CNN-LSTM算法进行对比|Matlab基础知识:基于WOA-CNN-LSTM-Attention的数据回归算法是一种利用深度学习技术来进行数据回归分析的方法。它结合了WOA(WhaleOptimizationAlgorithm)、CNN(ConvolutionalNeuralNetwork)、LSTM(LongSh
- 【PyTorch Ligntning】快速上手简明指南
何处闻韶
【PyTorchLightning】
目录一、简介二、安装PyTorchLightning三、定义LightningModule3.1SYSTEMVSMODEL3.2FORWARDvsTRAINING_STEP三、配置LightningTrainer四、基本特性4.1Manualvsautomaticoptimization4.1.1自动优化(Automaticoptimization)4.1.1手动优化(Manualoptimiza
- 阅读笔记(TMM2022)Image stitching with manifold optimization
J@u1
传统版图像拼接笔记图像拼接
ZhangL,HuangH.Imagestitchingwithmanifoldoptimization[J].IEEETransactionsonMultimedia,2022.
- 什么是SEO?和SPA与SSR又有什么关系?
才艺のblog
搜索引擎vue.jswebpack
1、什么是SEO?SEO(SearchEngineOptimization):汉译为搜索引擎优化。就是指按照搜索引擎的算法,提升你的文章在搜索引擎中的自然排名,比如百度。那网站在首页有什么好处呢?举个例子,长沙的老王事业很顺利,家庭很幸福,也赚了不少钱,老王和老婆小张一商量,准备把房子重新装修一下,老王的老婆小张也表示想要温馨一点的甜蜜的装修风格于是就百度搜索了一下“长沙装修公司”结果就出来了,看
- 微信小程序分包异步化,分包之间可以互相使用自定义组件
KAGHQ
小程序微信小程序小程序
官网链接转载uni构建的微信小程序中使用1.开启分包在manifest.json文件中对应平台开启分包{"mp-weixin":{/*微信小程序特有相关*/"optimization":{//开启分包"subPackages":true},"appid":"","setting":{"urlCheck":false},"usingComponents":true},}pages同级创建文件夹pac
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri