- 芯片时钟树结构(H-tree,Fishbone,FlexH,Mesh等)的对比、应用实例及未来趋势
赛卡
人工智能服务器云计算边缘计算
引言在先进制程芯片设计中,时钟树综合(ClockTreeSynthesis,CTS)的优化程度直接影响芯片的时序收敛、功耗分布和面积利用率。随着工艺节点演进至5nm及以下,时钟网络的复杂性和设计约束呈现指数级增长。本文将深入解析H-tree、Fishbone、FlexHtree及Clockmesh四种主流时钟树结构的技术特性,结合服务器芯片、GPU及AI芯片的实战案例,并探讨主流EDA工具对CTS
- 30个节点的Doris集群,每个节点有2块7TB的SSD盘,12块8TB的机械盘,分区和分桶的最佳实践
fzip
DorisDoris分区分桶
针对30个节点(每个节点配备2块7TBNVMe盘+12块8TBSATA盘)的Doris集群,以下是分区与分桶的最佳实践方案:一、硬件资源规划与存储优化存储介质分层•NVMe盘:用于存储热数据分区(如最近3天数据)、元数据和高频查询表,利用其高IOPS特性提升实时查询性能。•SATA盘:存储冷数据分区(如历史数据)、大宽表和批量导入的中间数据,通过成本优势支撑海量存储。磁盘负载均衡•每个节点的14块
- Java 方法引用(Method Reference)从入门到精通
秋.
JAVA开发语言java方法引用
方法引用概述方法引用(MethodReference)是Java8引入的一种简洁的Lambda表达式写法。它允许我们直接引用已有的方法,而不必重复实现Lambda代码,使代码更加简洁、可读性更强。方法引用的基本语法如下:类名::静态方法名对象名::实例方法名类名::实例方法名类名::new//构造方法引用主要类型引用静态方法引用特定对象的实例方法//需要形参和返回值类型一样引用某个类的任意对象的实
- 大模型高效优化技术全景解析:微调、量化、剪枝、梯度裁剪与蒸馏
时光旅人01号
人工智能剪枝算法深度学习数据挖掘人工智能
目录微调(Fine-tuning)量化(Quantization)剪枝(Pruning)梯度裁剪(GradientClipping)知识蒸馏(KnowledgeDistillation)技术对比与协同策略总结与趋势1.微调(Fine-tuning)核心思想在预训练模型(如BERT、GPT)基础上,通过领域数据调整参数,适配下游任务。方法流程预训练模型加载:加载通用模型权重(如HuggingFace
- 推理大模型:技术解析与未来趋势全景
时光旅人01号
深度学习人工智能pythonpytorch神经网络
1.推理大模型的定义推理大模型(ReasoningLLMs)是专门针对复杂多步推理任务优化的大型语言模型,具备以下核心特性:输出形式创新展示完整逻辑链条(如公式推导、多阶段分析)任务类型聚焦擅长数学证明、编程挑战、多模态谜题等深度逻辑任务训练方法升级融合强化学习、思维链(CoT)、测试时计算扩展等技术2.主流推理大模型图谱2.1国际前沿模型OpenAIo1系列内部生成"思维链"机制数学/代码能力标
- 解锁Linux命令行的终极指南:从日常操作到系统掌控
领码科技
技能篇Linux命令日常操作系统管理Shell脚本
摘要Linux操作系统凭借其开源、高效、稳定的特性,已成为开发者和运维工程师的核心工具。本文深度解析Linux命令的底层逻辑与实战技巧,涵盖文件管理、权限控制、进程监控、网络运维等高频场景,结合Shell脚本编写与正则表达式应用,助您实现从命令行基础到高阶系统管理的跃迁。精选80+核心指令详解,配合真实案例与避坑指南,让您轻松驾驭Linux系统的日常运维与深度优化。关键词:Linux命令、日常操作
- 董事长十几刀刺死 CTO:一个要“先发布后优化”,一个坚持先优化。。。
程序员的那些事_
大家好,我是小程程。今天又是一起很刑的真实案例,也就上周的事。董事长刺死CTO3月7日,中国台湾省的云云科技公司发生一件震惊业界的命案。52岁的董事长曾志新因与51岁的梁姓CTO长期理念不合,在公司离职谈判期间持水果刀从背后猛刺CTO十余刀,最终致其身亡。曾董(左)和梁哥(右)据台北市信义区警方调查,双方在产品开发策略与管理模式上积怨已深,最终演变为暴力惨剧。梁哥是在2022年1月由前CTO引荐加
- MongoDB在Spring商城用户行为记录中的应用
小小初霁
mongodbspring数据库
一、MongoDB的优势灵活Schema用户行为数据结构多变(如点击、搜索、下单),MongoDB的文档模型无需固定字段,适应快速迭代。高吞吐写入支持批量插入,适合高并发场景(如秒杀活动的用户操作记录)。复杂查询优化支持聚合管道、地理空间查询、全文索引,便于多维分析。水平扩展通过分片(Sharding)应对海量数据存储。二、用户行为数据建模1.基础行为记录集合(如user_actions){"us
- 【AI论文】TPDiff:时序金字塔视频扩散模型
东临碣石82
人工智能算法
摘要:视频扩散模型的发展揭示了一个重大挑战:巨大的计算需求。为了缓解这一挑战,我们注意到扩散的反向过程具有内在的熵减少特性。鉴于视频模态中的帧间冗余,在高熵阶段保持全帧率是不必要的。基于这一洞见,我们提出了TPDiff,一个统一的框架,用于提高训练和推理效率。通过将扩散过程分为几个阶段,我们的框架在扩散过程中逐步增加帧率,仅在最后阶段采用全帧率,从而优化计算效率。为了训练多阶段扩散模型,我们引入了
- DeepSeek 与其他 AI 模型的对比:优势与特色分析
CarlowZJ
人工智能DeepSeek
一、引言在众多AI模型中,DeepSeek凭借其独特的功能和优势脱颖而出。本文将对比DeepSeek与其他流行的AI模型,分析它的优势与特色。二、与GPT系列的对比功能多样性:DeepSeek不仅支持文本生成,还支持代码生成和对话交互。多模态能力:DeepSeek支持多种输入和输出形式,如图像和语音。行业适配性:DeepSeek提供了针对不同行业的优化方案。三、与BERT系列的对比生成能力:Dee
- React Native 性能调试指南
一个前端人
react-nativereactnativereact.jsjavascript
写在前面在开发ReactNative应用时,性能优化是一个至关重要的环节。良好的性能不仅可以提升用户体验,还能减少应用的资源消耗,提高应用的稳定性。本文将详细介绍如何对ReactNative应用进行性能调试和优化,包括性能综述、编译速度优化、列表配置优化、JavaScript加载优化以及Profiling。一、性能综述在开始性能调试之前,了解一些基本概念和工具是非常重要的。以下是一些关键点:FPS
- L2-4 吉利矩阵(优化剪枝版)
终相守丶空白
深度优先算法图论
L2-4吉利矩阵暴力解法:L2-4吉利矩阵-CSDN博客作者陈越单位浙江大学所有元素为非负整数,且各行各列的元素和都等于7的3×3方阵称为“吉利矩阵”,因为这样的矩阵一共有666种。本题就请你统计一下,把7换成任何一个[2,9]区间内的正整数L,把矩阵阶数换成任何一个[2,4]区间内的正整数N,满足条件“所有元素为非负整数,且各行各列的元素和都等于L”的N×N方阵一共有多少种?输入格式:输入在一行
- 如何进行OceanBase 运维工具的部署和表性能优化!
运维
随着OceanBase数据库应用的日益深入,数据量不断攀升,单个表中存储数百万乃至数千万条数据的情况变得愈发普遍。因此,部署专门的运维工具、实施针对性的表性能优化策略,以及加强指标监测工作,都变得更为重要。以下为基于我们的使用场景,所采取的一些部署和优化措施分享。一、OCP部署升级1.OCP升级(1)4.2.1BP1升级到4.2.2,本来以为毫无波澜但是下载完毕一键包并完成前期准备工作启动后发现无
- 场景题:100G的文件里有很多id,用1G内存的机器排序,怎么做?
海量数据排序思路核心方案:外排序(分治+多路归并)MapReduce外排序是指数据量太大,无法全部加载到内存中,需要将数据分成多个小块进行排序,然后将排序后的小块合并成一个大的有序块1.分块排序(Map阶段)分块策略按1G内存容量限制,将100G文件拆分为200个500MB分块(保留内存用于排序计算和系统开销)内存排序每个分块加载至内存后:①使用快速排序(时间复杂度O(nlogn))②去重优化:若
- 账本 1.01 版本:样式优化升级分享
烂蜻蜓
html前端css
在开发账本应用的过程中,持续的样式优化对于提升用户体验起着至关重要的作用。本次账本1.02版本着重对样式进行了全面优化,让应用在视觉上更加美观、操作上更加便捷。下面就为大家分享一些关键代码及优化思路。话不多说,先上效果图。一、整体布局优化在index.vue和add.vue中,整体布局都采用了flex布局方式。以index.vue为例:.container{display:flex;flex-di
- 【漫话机器学习系列】137.随机搜索(Randomized Search)
IT古董
漫话机器学习系列专辑机器学习人工智能
随机搜索(RandomizedSearch)详解在机器学习和深度学习的模型训练过程中,超参数调优(HyperparameterTuning)是至关重要的一环。随机搜索(RandomizedSearch)是一种高效的超参数优化方法,它通过在候选超参数的数值分布(如正态分布、均匀分布等)中随机选择超参数组合,从而找到最优的超参数配置。1.超参数调优的必要性超参数是模型在训练之前需要人为设定的参数,例如
- 图片加载框架Glide与Picasso原理剖析
Ya-Jun
glideandroid
图片加载框架Glide与Picasso原理剖析一、前言图片加载是Android应用开发中的一个重要环节,良好的图片加载机制可以提升应用性能和用户体验。Glide和Picasso是目前最流行的两个图片加载框架,本文将深入分析这两个框架的核心原理和实现机制。二、图片加载基础2.1图片加载的挑战内存管理OOM(OutOfMemory)问题内存缓存策略图片复用性能优化异步加载图片压缩缓存机制用户体验加载占
- Android电量与流量优化
Ya-Jun
android
Android电量与流量优化一、电量优化基础1.1电量消耗原理Android设备的电量消耗主要来源于以下几个方面:屏幕显示:屏幕是耗电量最大的硬件之一,尤其是高亮度和高刷新率的屏幕。CPU处理:CPU执行计算任务时会消耗大量电量,尤其是高负载运算。网络通信:移动数据、Wi-Fi和蓝牙等网络通信会持续消耗电量。GPS定位:GPS定位是非常耗电的操作,尤其是高精度定位。传感器使用:加速度计、陀螺仪等传
- 深度学习模块缝合教程:从理论到实践
RockLiu@805
深度学习模块机器视觉深度学习人工智能
深度学习模块缝合教程:从理论到实践引言随着深度学习的不断发展,模型的设计与优化成为研究者关注的核心问题之一。如何有效地“缝合”不同模块,以实现更高效的计算和更强大的功能,是当前深度学习研究中的一个重要课题。在本文中,我们将从基础概念出发,详细探讨深度学习模块缝合的方法、技巧及其应用场景。无论是理论深厚的研究者还是实验导向的实践者,都可以从中获得启发。一、深度学习基础知识详解深度学习是人工智能领域的
- Stable Diffusion/DALL-E 3图像生成优化策略
云端源想
stablediffusion
StableDiffusion的最新版本或社区开发的插件,可以补充这些信息以保持内容的时效性。云端源想1.硬件与部署优化(进阶)显存压缩技术使用--medvram或--lowvram启动参数(StableDiffusionWebUI),通过分层加载模型降低显存占用(适合6GB以下显卡)。分块推理(TiledDiffusion):将图像分割为512×512区块,逐块生成后无缝拼接,支持4096×40
- GPU底层优化的关键语言(深入解析PTX);PTX相比汇编语言的核心优势
AI-AIGC-7744423
rust开发语言后端
PTX作为英伟达GPU的底层语言,既是性能优化的利器,也是打破生态垄断的突破口。其“类汇编”特性赋予开发者对硬件的极致控制权,但高昂的开发成本与生态依赖仍制约其普及。随着AI技术的介入和开源生态的成熟,PTX或将成为下一代算力竞争的关键战场。一、PTX的技术定位与核心特性中间指令集的角色PTX(ParallelThreadExecution)是英伟达GPU架构中的中间指令集架构,介于高级编程语言(
- linux bash 取得命令执行的结果,Linux的Bash特性之:命令的执行结果以及状态结果...
寻书人
linuxbash取得命令执行的结果
linux中的命令执行的状态结果:bash通过状态返回值来输出此结果:成功:0失败:1-255命令执行完成之后,其状态返回值保存于bash的特殊变量$?中;命令正常执行时,有命令的返回值:根据命令及其功能不同,结果各不相同;引用命令的执行结果(命令结果):$(COMMAND)或COMMAND(反引号)例如:ll/tmp/命令运行后返回的结果为命令的执行结果,命令执行成功后的状态结果返回在特殊变量$
- 开源项目的企业级性能优化服务:高价值咨询
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
文章标题《开源项目的企业级性能优化服务:高价值咨询》关键词:开源项目、企业级性能优化、性能评估、性能瓶颈、高可用性、性能优化服务、案例研究、优化策略摘要:本文章深入探讨了开源项目在企业环境中的性能优化问题,详细介绍了企业级性能优化服务的核心概念、方法、策略和实战案例。文章结构清晰,内容丰富,旨在为企业和开发人员提供高价值的性能优化咨询。目录第一部分:背景与核心概念第1章:开源项目的企业级性能优化概
- 群体智能优化算法-黄金正余弦优化算法(含Matlab源代码)
EOL_HRZ
算法matlab开发语言群体智能优化优化
摘要黄金正余弦优化算法(GoldenSineAlgorithm,GoldSA)是一种数学启发式算法,基于黄金分割系数(GoldenRatio)以及正余弦函数的随机扰动机制来更新解的位置。该算法通过在迭代过程中不断利用黄金分割比例来调整搜索范围,同时结合正弦与余弦变化,为个体提供多样化的全局搜索与局部微调能力。本文提供了GoldSA的核心思想与完整MATLAB代码,并附上中文详细注释,以帮助读者深入
- GAN生成对抗网络小记
文弱_书生
乱七八糟生成对抗网络人工智能神经网络
生成对抗网络(GAN)深入解析:数学原理与优化生成对抗网络(GenerativeAdversarialNetwork,GAN)是一个基于博弈论的深度学习框架,通过生成器(G)和判别器(D)之间的对抗训练,生成高度逼真的数据。其核心思想是让GGG生成伪造数据以欺骗DDD,而DDD则努力分辨真实数据与伪造数据。GAN在理论上可以看作一个极小极大(Minimax)优化问题。1.GAN的数学公式1.1生成
- C# 通过 CLR 调用 C++ 代码无法命中断点问题解决
qzy0621
C++调试c++c#
C#通过CLR调用C++代码无法命中断点问题解决一、启用混合模式调试二、C++项目配置核查三、确保生成配置一致四、确认编译器配置符号路径设置,在VS调试时查看模块窗口强制附加调试器(备选方案)常见陷阱排查表C#通过CLR调用C++代码无法命中断点问题解决以下是解决C#通过CLR调用C++代码时无法命中断点的综合解决方案,结合了调试配置优化、符号加载及常见陷阱排查:一、启用混合模式调试在C#项目的属
- XGBoost算法深度解析:从原理到实践
彩旗工作室
人工智能算法机器学习人工智能
一、算法起源与核心思想XGBoost(eXtremeGradientBoosting)由陈天奇于2014年提出,是梯度提升决策树(GBDT)的优化版本。其核心思想通过迭代集成弱学习器(CART树)逐步修正预测误差,并引入正则化机制控制模型复杂度,防止过拟合。与GBDT相比,XGBoost在目标函数中融合了损失函数(衡量预测误差)和正则化项(约束树结构与叶子权重),形成结构风险最小化框架,从而提升泛
- Vim忍者速成秘卷:让你的键盘冒出残影の奥义
ivwdcwso
操作系统与云原生vim编辑器程序员忍道终端美学效率革命linux
核心原理通过超低延迟配置+肌肉记忆优化+视觉欺骗技术,达成行云流水的操作体验。就像《火影忍者》结印般流畅!⚡残影生成术(基础篇)"️贴地飞行模式(.vimrc极速配置)settimeoutlen=300"快捷键响应时间压缩至300ms(武士刀级响应)setttyfast"激活终端极速传输模式setlazyredraw"执行宏时暂停界面刷新(性能提升50%)"手里剑光标追踪术autocmdCurso
- 多线程程序的测试和调试_第11章_《C++并发编程实战》笔记
郭涤生
#并发线程c/c++c++笔记并发编程
多线程程序的测试和调试1.并发相关Bug的核心类型1.1数据竞争(DataRace)1.2死锁(Deadlock)1.3活锁(Livelock)2.定位并发Bug的技巧3.代码优化与修复示例3.1修复数据竞争(使用原子操作)3.2避免死锁(统一锁顺序)4.总结5.多选题目及答案6.设计题目7.设计题目参考答案1.并发相关Bug的核心类型1.1数据竞争(DataRace)定义:多线程同时访问共享数据
- 并发设计_第八章_《C++并发编程实战》笔记
郭涤生
#并发线程c/c++c++并发编程
并发设计1.线程间工作划分(工作窃取)2.性能优化(伪共享与缓存行对齐)3.设计并发数据结构(无锁队列)4.多选题目5.多选题目答案4.设计题目5.设计题目参考答案1.线程间工作划分(工作窃取)概念:使用工作窃取(WorkStealing)策略平衡负载。空闲线程从其他线程的任务队列尾部“偷”任务执行,减少闲置线程。代码示例:线程池实现工作窃取队列#include#include#include#i
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不