大话数据结构读书笔记系列(二)算法

 转载请注明来源: http://blog.csdn.net/u010194538/article/details/50996636

第2章 算法

算法:

  算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或多个操作

算法具有五个基本特性:输入、输出、有穷性、确定性和可行性。

算法设计的要求:应该具有正确性、可读性、健壮性、高效率和低存储量的特征。

2.7 算法效率的度量方法

2.7.1 事后统计方法:这种方法主要是通过设计好的测试程序和数据,利用计算机计时器对不同算法编制的程序的运行时间进行比较,从而确定算法效率的高低。(有缺陷

 

2.7.2 事前分析估算方法:在计算机程序编制前,依据统计方法对算法进行估算。

 

抛开这些与计算机硬件、软件有关的因素,一个程序的运行时间,依赖于算法的好坏和问题的输入规模。所谓问题输入规模是指输入量的多少。

2.8 函数的渐近增长

某个算法,随着n的增大,它会越来越优于另一算法,或者越来越差于另一算法。这其实就是事前估算方法的理论依据,通过算法时间复杂度来估算算法时间效率。

2.9 算法时间复杂度

在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n)=O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。

 

2.9.2 推导大O阶方法

1.用常数1取代运行时间中的所有加法常数。

2.在修改后的运行次数函数中,只保留最高阶项。

3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。得到的结果就是大O阶。

 

我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。

 

2.10 常见的时间复杂度

常见的时间复杂度如表2-10-1所示。


常用的时间复杂度所耗费的时间从小到大依次是:


2.12 算法空间复杂度

算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式记作:S(n)=O(f(n)),其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。

你可能感兴趣的:(数据结构,读书笔记)