Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2724 Accepted Submission(s): 677
2 1 2 3 4 1 3 5 7 4 2 1 2 3 4 1 4 4 1 1 2 3 4 1 3 5 7 4 1 1 2 3 10 1 4
Case 1: The minimum cost between station 1 and station 4 is 3. The minimum cost between station 4 and station 1 is 3. Case 2: Station 1 and station 4 are not attainable.
题目大意:先给你好几段距离分别要收多少费用,超过某段距离就不能行走,然后再给你很多个点。问:给你任意两个点,这两个点要达到最少费用是多少? 由于是任意两点,那么用floyd最好。
需要注意:距离范围很大,INF要很大才行,要用到long long,写的时候要加上LL。
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1690
代码:
#include <iostream> #include <stdio.h> #include <memory.h> #include <cmath> using namespace std; const long long INF = 99999999999LL; //注意!要加LL,不然会报错数据太大 const int N = 105; int l1, l2, l3, l4, c1, c2, c3, c4; long long map[N][N]; //距离可能会爆int,所以用long long int place[N]; int n, m; void init() { int i, j; for(i = 1; i <= n; i++) for(j = 1; j <= n; j++) if(i == j) map[i][j] = 0; else map[i][j] = INF; } void input() { int i, j, len; scanf("%d%d%d%d%d%d%d%d", &l1, &l2, &l3, &l4, &c1, &c2, &c3, &c4); scanf("%d %d", &n, &m); init(); for(i = 1; i <= n; i++) { scanf("%d", &place[i]); } for(i = 1; i <= n; i++) { for(j = i+1; j <= n; j++) { len = abs(place[i] - place[j]); if(0 < len && len <= l1) map[i][j] = map[j][i] = c1; else if(l1 < len && len <= l2) map[i][j] = map[j][i] = c2; else if(l2 < len && len <= l3) map[i][j] = map[j][i] = c3; else if(l3 < len && len <= l4) map[i][j] = map[j][i] = c4; } } } void floyd() //这题绝对是用floyd方便 { int i, j, k; for(k = 1; k <= n; k++) for(i = 1; i <= n; i++) for(j = 1; j <= n; j++) if(map[i][j] > map[i][k] + map[k][j]) map[i][j] = map[i][k] + map[k][j]; } void output() { int ti, tj; static int zz = 1; printf("Case %d:\n", zz++); while(m--) { scanf("%d %d", &ti, &tj); if(map[ti][tj] != INF) printf("The minimum cost between station %d and station %d is %I64d.\n", ti, tj, map[ti][tj]); else printf("Station %d and station %d are not attainable.\n", ti, tj); } } int main() { int t; scanf("%d", &t); while(t--) { input(); floyd(); output(); } return 0; }