java中String类、StringBuffer类、StringBuilder类的区别(未完待续)

java中String类、StringBuffer类、StringBuilder类的区别,这个问题是java基础问题,老生常谈,也是很重要的一个内容,因为我们每天都在用。也是面试官经常问到的一个问题。


一,String类

1,String类位于java.lang.*包下。

2,public final class String implements java.io.Serializable, Comparable<String>, CharSequence,String类实现了这3个接口。

3,String类是字符串常量,并且字符串长度不可变。,

4,在底层,String类的实现,是依赖于char的。


二,StringBuffer类

1,StringBuffer类是字符串变量,也就是说字符串的长度是可变的;

2,StringBuffer类是线程安全的,Synchronized;

3,如果需要频繁的对String进行操作,建议使用StringBuffer类,StringBuffer类在处理字符串时,具有更好的效率;

4,如果需要转换成String,只需要调用StringBuffer的toString方法即可。


三,StringBuilder类

1,StringBuilder类是字符串变量,也就是说字符串的长度是可变的;

2,StringBuilder类是非线程安全的;

3,StringBuilder类被设计成StringBuilder的替换类,如果在单线程环境下,可以使用StringBuilder替换StringBuffer;




附上String类的源代码:

/**
 * The String class represents character strings. All
 * string literals in Java programs, such as <code>"abc"</code>, are
 * implemented as instances of this class.
 * String类是字符串常量,他们的值一旦创建是不可改变的。
 * Strings are constant; their values cannot be changed after they
 * are created. String buffers support mutable strings.
 * Because String objects are immutable(不变的) they can be shared. For example:
       String str = "abc"; 

       char data[] = {'a', 'b', 'c'};
      String str = new String(data);

//上面2种写法是等价的
 * Here are some more examples of how strings can be used:
 *     System.out.println("abc");
 *     String cde = "cde";
 *     System.out.println("abc" + cde);
 *     String c = "abc".substring(2,3);
 *     String d = cde.substring(1, 2);
 * The Java language provides special support for the string
 * concatenation operator ( + ), and for conversion of
 * other objects to strings. String concatenation is implemented
 * through the <code>StringBuilder</code>(or <code>StringBuffer</code>)
 * class and its <code>append</code> method.
 * String conversions are implemented through the method
 * <code>toString</code>, defined by <code>Object</code> and
 * inherited by all classes in Java. For additional information on
 * string concatenation and conversion, see Gosling, Joy, and Steele,
 */

public final class String implements java.io.Serializable, Comparable<String>, CharSequence {
    /** final类型的字符数组,用来存放String,从这里可以看出,String在底层是通过字符数组来存放的. */
    private final char value[];

    /** Cache the hash code for the string */
    private int hash; // Default to 0

    /** use serialVersionUID from JDK 1.0.2 for interoperability */
    private static final long serialVersionUID = -6849794470754667710L;

    /**
     * Class String is special cased within the Serialization Stream Protocol.
     *
     * A String instance is written initially into an ObjectOutputStream in the
     * following format:
     * <pre>
     *      <code>TC_STRING</code> (utf String)
     * </pre>
     * The String is written by method <code>DataOutput.writeUTF</code>.
     * A new handle is generated to  refer to all future references to the
     * string instance within the stream.
     */
    private static final ObjectStreamField[] serialPersistentFields =
            new ObjectStreamField[0];

    public String() {
        this.value = new char[0];
    }

    public String(String original) {
        this.value = original.value;
        this.hash = original.hash;
    }

    /**
     * Allocates a new {@code String} so that it represents the sequence of
     * characters currently contained in the character array argument. The
     * contents of the character array are copied; subsequent modification of
     * the character array does not affect the newly created string.
     */
    public String(char value[]) {
        this.value = Arrays.copyOf(value, value.length);
    }

    /**
     * Allocates a new String that contains characters from a subarray of the character array argument. The offset argument is the
     * index of the first character of the subarray and the count argument specifies the length of the subarray. The contents of the
     * subarray are copied; subsequent modification of the character array does not affect the newly created string.
     */
    public String(char value[], int offset, int count) {
        if (offset < 0) {
            throw new StringIndexOutOfBoundsException(offset);
        }
        if (count < 0) {
            throw new StringIndexOutOfBoundsException(count);
        }
        // Note: offset or count might be near -1>>>1.
        if (offset > value.length - count) {
            throw new StringIndexOutOfBoundsException(offset + count);
        }
        this.value = Arrays.copyOfRange(value, offset, offset+count);
    }

    public String(int[] codePoints, int offset, int count) {
        if (offset < 0) {
            throw new StringIndexOutOfBoundsException(offset);
        }
        if (count < 0) {
            throw new StringIndexOutOfBoundsException(count);
        }
        // Note: offset or count might be near -1>>>1.
        if (offset > codePoints.length - count) {
            throw new StringIndexOutOfBoundsException(offset + count);
        }
        final int end = offset + count;
        // Pass 1: Compute precise size of char[]
        int n = count;
        for (int i = offset; i < end; i++) {
            int c = codePoints[i];
            if (Character.isBmpCodePoint(c))
                continue;
            else if (Character.isValidCodePoint(c))
                n++;
            else throw new IllegalArgumentException(Integer.toString(c));
        }
        // Pass 2: Allocate and fill in char[]
        final char[] v = new char[n];
        for (int i = offset, j = 0; i < end; i++, j++) {
            int c = codePoints[i];
            if (Character.isBmpCodePoint(c))
                v[j] = (char)c;
            else
                Character.toSurrogates(c, v, j++);
        }
        this.value = v;
    }

    /* Common private utility method used to bounds check the byte array
     * and requested offset & length values used by the String(byte[],..)
     * constructors.
     */
    private static void checkBounds(byte[] bytes, int offset, int length) {
        if (length < 0)
            throw new StringIndexOutOfBoundsException(length);
        if (offset < 0)
            throw new StringIndexOutOfBoundsException(offset);
        if (offset > bytes.length - length)
            throw new StringIndexOutOfBoundsException(offset + length);
    }

    public String(byte bytes[], int offset, int length, String charsetName)
            throws UnsupportedEncodingException {
        if (charsetName == null)
            throw new NullPointerException("charsetName");
        checkBounds(bytes, offset, length);
        this.value = StringCoding.decode(charsetName, bytes, offset, length);
    }

    public String(byte bytes[], int offset, int length, Charset charset) {
        if (charset == null)
            throw new NullPointerException("charset");
        checkBounds(bytes, offset, length);
        this.value =  StringCoding.decode(charset, bytes, offset, length);
    }

    /**
     * Constructs a new {@code String} by decoding the specified array of bytes
     * using the specified {@linkplain java.nio.charset.Charset charset}.  The
     * length of the new {@code String} is a function of the charset, and hence
     * may not be equal to the length of the byte array.
     *
     * <p> The behavior of this constructor when the given bytes are not valid
     * in the given charset is unspecified.  The {@link
     * java.nio.charset.CharsetDecoder} class should be used when more control
     * over the decoding process is required.
     *
     * @param  bytes
     *         The bytes to be decoded into characters
     *
     * @param  charsetName
     *         The name of a supported {@linkplain java.nio.charset.Charset
     *         charset}
     *
     * @throws  UnsupportedEncodingException
     *          If the named charset is not supported
     *
     * @since  JDK1.1
     */
    public String(byte bytes[], String charsetName)
            throws UnsupportedEncodingException {
        this(bytes, 0, bytes.length, charsetName);
    }

    /**
     * Constructs a new {@code String} by decoding the specified array of
     * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
     * The length of the new {@code String} is a function of the charset, and
     * hence may not be equal to the length of the byte array.
     *
     * <p> This method always replaces malformed-input and unmappable-character
     * sequences with this charset's default replacement string.  The {@link
     * java.nio.charset.CharsetDecoder} class should be used when more control
     * over the decoding process is required.
     *
     * @param  bytes
     *         The bytes to be decoded into characters
     *
     * @param  charset
     *         The {@linkplain java.nio.charset.Charset charset} to be used to
     *         decode the {@code bytes}
     *
     * @since  1.6
     */
    public String(byte bytes[], Charset charset) {
        this(bytes, 0, bytes.length, charset);
    }

    public String(byte bytes[], int offset, int length) {
        checkBounds(bytes, offset, length);
        this.value = StringCoding.decode(bytes, offset, length);
    }

    /**
     * Constructs a new {@code String} by decoding the specified array of bytes
     * using the platform's default charset.  The length of the new {@code
     * String} is a function of the charset, and hence may not be equal to the
     * length of the byte array.
     *
     * <p> The behavior of this constructor when the given bytes are not valid
     * in the default charset is unspecified.  The {@link
     * java.nio.charset.CharsetDecoder} class should be used when more control
     * over the decoding process is required.
     *
     * @param  bytes
     *         The bytes to be decoded into characters
     *
     * @since  JDK1.1
     */
    public String(byte bytes[]) {
        this(bytes, 0, bytes.length);
    }

    /**
     * Allocates a new string that contains the sequence of characters
     * currently contained in the string buffer argument. The contents of the
     * string buffer are copied; subsequent modification of the string buffer
     * does not affect the newly created string.
     *
     * @param  buffer
     *         A {@code StringBuffer}
     */
    public String(StringBuffer buffer) {
        synchronized(buffer) {
            this.value = Arrays.copyOf(buffer.getValue(), buffer.length());
        }
    }

    /**
     * Allocates a new string that contains the sequence of characters
     * currently contained in the string builder argument. The contents of the
     * string builder are copied; subsequent modification of the string builder
     * does not affect the newly created string.
     *
     * <p> This constructor is provided to ease migration to {@code
     * StringBuilder}. Obtaining a string from a string builder via the {@code
     * toString} method is likely to run faster and is generally preferred.
     *
     * @param   builder
     *          A {@code StringBuilder}
     *
     * @since  1.5
     */
    public String(StringBuilder builder) {
        this.value = Arrays.copyOf(builder.getValue(), builder.length());
    }

    /*
    * Package private constructor which shares value array for speed.
    * this constructor is always expected to be called with share==true.
    * a separate constructor is needed because we already have a public
    * String(char[]) constructor that makes a copy of the given char[].
    */
    String(char[] value, boolean share) {
        // assert share : "unshared not supported";
        this.value = value;
    }

    /**
     * Package private constructor
     *
     * @deprecated Use {@link #String(char[],int,int)} instead.
     */
    @Deprecated
    String(int offset, int count, char[] value) {
        this(value, offset, count);
    }

    /**
     * Returns the length of this string.
     * The length is equal to the number of <a href="Character.html#unicode">Unicode
     * code units</a> in the string.
     *
     * @return  the length of the sequence of characters represented by this
     *          object.
     */
    public int length() {
        return value.length;
    }

    /**
     * Returns <tt>true</tt> if, and only if, {@link #length()} is <tt>0</tt>.
     *
     * @return <tt>true</tt> if {@link #length()} is <tt>0</tt>, otherwise
     * <tt>false</tt>
     *
     * @since 1.6
     */
    public boolean isEmpty() {
        return value.length == 0;
    }

    /**
     * Returns the <code>char</code> value at the
     * specified index. An index ranges from <code>0</code> to
     * <code>length() - 1</code>. The first <code>char</code> value of the sequence
     * is at index <code>0</code>, the next at index <code>1</code>,
     * and so on, as for array indexing.
     *
     * <p>If the <code>char</code> value specified by the index is a
     * <a href="Character.html#unicode">surrogate</a>, the surrogate
     * value is returned.
     */
    public char charAt(int index) {
        if ((index < 0) || (index >= value.length)) {
            throw new StringIndexOutOfBoundsException(index);
        }
        return value[index];
    }

    /**
     * Returns the character (Unicode code point) at the specified
     * index. The index refers to <code>char</code> values
     * (Unicode code units) and ranges from <code>0</code> to
     * {@link #length()}<code> - 1</code>.
     *
     * <p> If the <code>char</code> value specified at the given index
     * is in the high-surrogate range, the following index is less
     * than the length of this <code>String</code>, and the
     * <code>char</code> value at the following index is in the
     * low-surrogate range, then the supplementary code point
     * corresponding to this surrogate pair is returned. Otherwise,
     * the <code>char</code> value at the given index is returned.
     */
    public int codePointAt(int index) {
        if ((index < 0) || (index >= value.length)) {
            throw new StringIndexOutOfBoundsException(index);
        }
        return Character.codePointAtImpl(value, index, value.length);
    }

    /**
     * Returns the character (Unicode code point) before the specified
     * index. The index refers to <code>char</code> values
     * (Unicode code units) and ranges from <code>1</code> to {@link
     * CharSequence#length() length}.
     *
     * <p> If the <code>char</code> value at <code>(index - 1)</code>
     * is in the low-surrogate range, <code>(index - 2)</code> is not
     * negative, and the <code>char</code> value at <code>(index -
     * 2)</code> is in the high-surrogate range, then the
     * supplementary code point value of the surrogate pair is
     * returned. If the <code>char</code> value at <code>index -
     * 1</code> is an unpaired low-surrogate or a high-surrogate, the
     * surrogate value is returned.
     */
    public int codePointBefore(int index) {
        int i = index - 1;
        if ((i < 0) || (i >= value.length)) {
            throw new StringIndexOutOfBoundsException(index);
        }
        return Character.codePointBeforeImpl(value, index, 0);
    }

    /**
     * Returns the number of Unicode code points in the specified text
     * range of this <code>String</code>. The text range begins at the
     * specified <code>beginIndex</code> and extends to the
     * <code>char</code> at index <code>endIndex - 1</code>. Thus the
     * length (in <code>char</code>s) of the text range is
     * <code>endIndex-beginIndex</code>. Unpaired surrogates within
     * the text range count as one code point each.
     *
     * @param beginIndex the index to the first <code>char</code> of
     * the text range.
     * @param endIndex the index after the last <code>char</code> of
     * the text range.
     * @return the number of Unicode code points in the specified text
     * range
     */
    public int codePointCount(int beginIndex, int endIndex) {
        if (beginIndex < 0 || endIndex > value.length || beginIndex > endIndex) {
            throw new IndexOutOfBoundsException();
        }
        return Character.codePointCountImpl(value, beginIndex, endIndex - beginIndex);
    }

    /**
     * Returns the index within this <code>String</code> that is
     * offset from the given <code>index</code> by
     * <code>codePointOffset</code> code points. Unpaired surrogates
     * within the text range given by <code>index</code> and
     * <code>codePointOffset</code> count as one code point each.
     *
     * @param index the index to be offset
     * @param codePointOffset the offset in code points
     * @return the index within this <code>String</code>
     */
    public int offsetByCodePoints(int index, int codePointOffset) {
        if (index < 0 || index > value.length) {
            throw new IndexOutOfBoundsException();
        }
        return Character.offsetByCodePointsImpl(value, 0, value.length,
                index, codePointOffset);
    }

    /**
     * Copy characters from this string into dst starting at dstBegin.
     * This method doesn't perform any range checking.
     */
    void getChars(char dst[], int dstBegin) {
        System.arraycopy(value, 0, dst, dstBegin, value.length);
    }

    /**
     * Copies characters from this string into the destination character
     * array.
     * <p>
     * The first character to be copied is at index <code>srcBegin</code>;
     * the last character to be copied is at index <code>srcEnd-1</code>
     * (thus the total number of characters to be copied is
     * <code>srcEnd-srcBegin</code>). The characters are copied into the
     * subarray of <code>dst</code> starting at index <code>dstBegin</code>
     * and ending at index:
     */
    public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
        if (srcBegin < 0) {
            throw new StringIndexOutOfBoundsException(srcBegin);
        }
        if (srcEnd > value.length) {
            throw new StringIndexOutOfBoundsException(srcEnd);
        }
        if (srcBegin > srcEnd) {
            throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
        }
        System.arraycopy(value, srcBegin, dst, dstBegin, srcEnd - srcBegin);
    }


    /**
     * Encodes this {@code String} into a sequence of bytes using the named
     * charset, storing the result into a new byte array.
     *
     * <p> The behavior of this method when this string cannot be encoded in
     * the given charset is unspecified.  The {@link
     * java.nio.charset.CharsetEncoder} class should be used when more control
     * over the encoding process is required.
     */
    public byte[] getBytes(String charsetName)
            throws UnsupportedEncodingException {
        if (charsetName == null) throw new NullPointerException();
        return StringCoding.encode(charsetName, value, 0, value.length);
    }

    /**
     * Encodes this {@code String} into a sequence of bytes using the given
     * {@linkplain java.nio.charset.Charset charset}, storing the result into a
     * new byte array.
     */
    public byte[] getBytes(Charset charset) {
        if (charset == null) throw new NullPointerException();
        return StringCoding.encode(charset, value, 0, value.length);
    }

    /**
     * Encodes this {@code String} into a sequence of bytes using the
     * platform's default charset, storing the result into a new byte array.
     *
     * <p> The behavior of this method when this string cannot be encoded in
     * the default charset is unspecified.  The {@link
     * java.nio.charset.CharsetEncoder} class should be used when more control
     * over the encoding process is required.
     */
    public byte[] getBytes() {
        return StringCoding.encode(value, 0, value.length);
    }

    /**
     * Compares this string to the specified object.  The result is {@code
     * true} if and only if the argument is not {@code null} and is a {@code
     * String} object that represents the same sequence of characters as this
     * object.
     */
    public boolean equals(Object anObject) {
        if (this == anObject) {
            return true;
        }
        if (anObject instanceof String) {
            String anotherString = (String) anObject;
            int n = value.length;
            if (n == anotherString.value.length) {
                char v1[] = value;
                char v2[] = anotherString.value;
                int i = 0;
                while (n-- != 0) {
                    if (v1[i] != v2[i])
                            return false;
                    i++;
                }
                return true;
            }
        }
        return false;
    }

    /**
     * Compares this string to the specified {@code StringBuffer}.  The result
     * is {@code true} if and only if this {@code String} represents the same
     * sequence of characters as the specified {@code StringBuffer}.
     */
    public boolean contentEquals(StringBuffer sb) {
        synchronized (sb) {
            return contentEquals((CharSequence) sb);
        }
    }

    /**
     * Compares this string to the specified {@code CharSequence}.  The result
     * is {@code true} if and only if this {@code String} represents the same
     * sequence of char values as the specified sequence.
     */
    public boolean contentEquals(CharSequence cs) {
        if (value.length != cs.length())
            return false;
        // Argument is a StringBuffer, StringBuilder
        if (cs instanceof AbstractStringBuilder) {
            char v1[] = value;
            char v2[] = ((AbstractStringBuilder) cs).getValue();
            int i = 0;
            int n = value.length;
            while (n-- != 0) {
                if (v1[i] != v2[i])
                    return false;
                i++;
            }
            return true;
        }
        // Argument is a String
        if (cs.equals(this))
            return true;
        // Argument is a generic CharSequence
        char v1[] = value;
        int i = 0;
        int n = value.length;
        while (n-- != 0) {
            if (v1[i] != cs.charAt(i))
                return false;
            i++;
        }
        return true;
    }

    /**
     * Compares this {@code String} to another {@code String}, ignoring case
     * considerations.  Two strings are considered equal ignoring case if they
     * are of the same length and corresponding characters in the two strings
     * are equal ignoring case.
     *
     * <p> Two characters {@code c1} and {@code c2} are considered the same
     * ignoring case if at least one of the following is true:
     * <ul>
     *   <li> The two characters are the same (as compared by the
     *        {@code ==} operator)
     *   <li> Applying the method {@link
     *        java.lang.Character#toUpperCase(char)} to each character
     *        produces the same result
     *   <li> Applying the method {@link
     *        java.lang.Character#toLowerCase(char)} to each character
     *        produces the same result
     * </ul>
     */
    public boolean equalsIgnoreCase(String anotherString) {
        return (this == anotherString) ? true
                : (anotherString != null)
                && (anotherString.value.length == value.length)
                && regionMatches(true, 0, anotherString, 0, value.length);
    }

    public int compareTo(String anotherString) {
        int len1 = value.length;
        int len2 = anotherString.value.length;
        int lim = Math.min(len1, len2);
        char v1[] = value;
        char v2[] = anotherString.value;
        int k = 0;
        while (k < lim) {
            char c1 = v1[k];
            char c2 = v2[k];
            if (c1 != c2) {
                return c1 - c2;
            }
            k++;
        }
        return len1 - len2;
    }

    /**
     * A Comparator that orders <code>String</code> objects as by
     * <code>compareToIgnoreCase</code>. This comparator is serializable.
     * <p>
     * Note that this Comparator does <em>not</em> take locale into account,
     * and will result in an unsatisfactory ordering for certain locales.
     * The java.text package provides <em>Collators</em> to allow
     * locale-sensitive ordering.
     */
    public static final Comparator<String> CASE_INSENSITIVE_ORDER = new CaseInsensitiveComparator();
    private static class CaseInsensitiveComparator
            implements Comparator<String>, java.io.Serializable {
        // use serialVersionUID from JDK 1.2.2 for interoperability
        private static final long serialVersionUID = 8575799808933029326L;
        public int compare(String s1, String s2) {
            int n1 = s1.length();
            int n2 = s2.length();
            int min = Math.min(n1, n2);
            for (int i = 0; i < min; i++) {
                char c1 = s1.charAt(i);
                char c2 = s2.charAt(i);
                if (c1 != c2) {
                    c1 = Character.toUpperCase(c1);
                    c2 = Character.toUpperCase(c2);
                    if (c1 != c2) {
                        c1 = Character.toLowerCase(c1);
                        c2 = Character.toLowerCase(c2);
                        if (c1 != c2) {
                            // No overflow because of numeric promotion
                            return c1 - c2;
                        }
                    }
                }
            }
            return n1 - n2;
        }
    }

    /**
     * Compares two strings lexicographically, ignoring case
     * differences. This method returns an integer whose sign is that of
     * calling <code>compareTo</code> with normalized versions of the strings
     * where case differences have been eliminated by calling
     * <code>Character.toLowerCase(Character.toUpperCase(character))</code> on
     * each character.
     * <p>
     * Note that this method does <em>not</em> take locale into account,
     * and will result in an unsatisfactory ordering for certain locales.
     * The java.text package provides <em>collators</em> to allow
     * locale-sensitive ordering.
     */
    public int compareToIgnoreCase(String str) {
        return CASE_INSENSITIVE_ORDER.compare(this, str);
    }

    /**
     * Tests if two string regions are equal.
     * <p>
     * A substring of this <tt>String</tt> object is compared to a substring
     * of the argument other. The result is true if these substrings
     * represent identical character sequences. The substring of this
     * <tt>String</tt> object to be compared begins at index <tt>toffset</tt>
     * and has length <tt>len</tt>. The substring of other to be compared
     * begins at index <tt>ooffset</tt> and has length <tt>len</tt>. The
     * result is <tt>false</tt> if and only if at least one of the following
     * is true:
     * <ul><li><tt>toffset</tt> is negative.
     * <li><tt>ooffset</tt> is negative.
     * <li><tt>toffset+len</tt> is greater than the length of this
     * <tt>String</tt> object.
     * <li><tt>ooffset+len</tt> is greater than the length of the other
     * argument.
     * <li>There is some nonnegative integer <i>k</i> less than <tt>len</tt>
     * such that:
     * <tt>this.charAt(toffset+<i>k</i>) != other.charAt(ooffset+<i>k</i>)</tt>
     */
    public boolean regionMatches(int toffset, String other, int ooffset,
            int len) {
        char ta[] = value;
        int to = toffset;
        char pa[] = other.value;
        int po = ooffset;
        // Note: toffset, ooffset, or len might be near -1>>>1.
        if ((ooffset < 0) || (toffset < 0)
                || (toffset > (long)value.length - len)
                || (ooffset > (long)other.value.length - len)) {
            return false;
        }
        while (len-- > 0) {
            if (ta[to++] != pa[po++]) {
                return false;
            }
        }
        return true;
    }

    /**
     * Tests if two string regions are equal.
     * <p>
     * A substring of this <tt>String</tt> object is compared to a substring
     * of the argument <tt>other</tt>. The result is <tt>true</tt> if these
     * substrings represent character sequences that are the same, ignoring
     * case if and only if <tt>ignoreCase</tt> is true. The substring of
     * this <tt>String</tt> object to be compared begins at index
     * <tt>toffset</tt> and has length <tt>len</tt>. The substring of
     * <tt>other</tt> to be compared begins at index <tt>ooffset</tt> and
     * has length <tt>len</tt>. The result is <tt>false</tt> if and only if
     * at least one of the following is true:
     * <ul><li><tt>toffset</tt> is negative.
     * <li><tt>ooffset</tt> is negative.
     * <li><tt>toffset+len</tt> is greater than the length of this
     * <tt>String</tt> object.
     * <li><tt>ooffset+len</tt> is greater than the length of the other
     * argument.
     * <li><tt>ignoreCase</tt> is <tt>false</tt> and there is some nonnegative
     * integer <i>k</i> less than <tt>len</tt> such that:
     * <blockquote><pre>
     * this.charAt(toffset+k) != other.charAt(ooffset+k)
     * </pre></blockquote>
     * <li><tt>ignoreCase</tt> is <tt>true</tt> and there is some nonnegative
     * integer <i>k</i> less than <tt>len</tt> such that:
     * <blockquote><pre>
     * Character.toLowerCase(this.charAt(toffset+k)) !=
     Character.toLowerCase(other.charAt(ooffset+k))
     * </pre></blockquote>
     * and:
     * <blockquote><pre>
     * Character.toUpperCase(this.charAt(toffset+k)) !=
     *         Character.toUpperCase(other.charAt(ooffset+k))
     * </pre></blockquote>
     * </ul>
     */
    public boolean regionMatches(boolean ignoreCase, int toffset,
            String other, int ooffset, int len) {
        char ta[] = value;
        int to = toffset;
        char pa[] = other.value;
        int po = ooffset;
        // Note: toffset, ooffset, or len might be near -1>>>1.
        if ((ooffset < 0) || (toffset < 0)
                || (toffset > (long)value.length - len)
                || (ooffset > (long)other.value.length - len)) {
            return false;
        }
        while (len-- > 0) {
            char c1 = ta[to++];
            char c2 = pa[po++];
            if (c1 == c2) {
                continue;
            }
            if (ignoreCase) {
                // If characters don't match but case may be ignored,
                // try converting both characters to uppercase.
                // If the results match, then the comparison scan should
                // continue.
                char u1 = Character.toUpperCase(c1);
                char u2 = Character.toUpperCase(c2);
                if (u1 == u2) {
                    continue;
                }
                // Unfortunately, conversion to uppercase does not work properly
                // for the Georgian alphabet, which has strange rules about case
                // conversion.  So we need to make one last check before
                // exiting.
                if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
                    continue;
                }
            }
            return false;
        }
        return true;
    }
//常用的方法
    public boolean startsWith(String prefix, int toffset) {
        char ta[] = value;
        int to = toffset;
        char pa[] = prefix.value;
        int po = 0;
        int pc = prefix.value.length;
        // Note: toffset might be near -1>>>1.
        if ((toffset < 0) || (toffset > value.length - pc)) {
            return false;
        }
        while (--pc >= 0) {
            if (ta[to++] != pa[po++]) {
                return false;
            }
        }
        return true;
    }
//常用的方法
    public boolean startsWith(String prefix) {
        return startsWith(prefix, 0);
    }

    public boolean endsWith(String suffix) {
        return startsWith(suffix, value.length - suffix.value.length);
    }

    /**
     * Returns a hash code for this string. The hash code for a
     * <code>String</code> object is computed as
     * <blockquote><pre>
     * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
     * </pre></blockquote>
     * using <code>int</code> arithmetic, where <code>s[i]</code> is the
     * <i>i</i>th character of the string, <code>n</code> is the length of
     * the string, and <code>^</code> indicates exponentiation.
     * (The hash value of the empty string is zero.)
     *
     * @return  a hash code value for this object.
     */
    public int hashCode() {
        int h = hash;
        if (h == 0 && value.length > 0) {
            char val[] = value;
            for (int i = 0; i < value.length; i++) {
                h = 31 * h + val[i];
            }
            hash = h;
        }
        return h;
    }

    public int indexOf(int ch) {
        return indexOf(ch, 0);
    }

    public int indexOf(int ch, int fromIndex) {
        final int max = value.length;
        if (fromIndex < 0) {
            fromIndex = 0;
        } else if (fromIndex >= max) {
            // Note: fromIndex might be near -1>>>1.
            return -1;
        }

        if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
            // handle most cases here (ch is a BMP code point or a
            // negative value (invalid code point))
            final char[] value = this.value;
            for (int i = fromIndex; i < max; i++) {
                if (value[i] == ch) {
                    return i;
                }
            }
            return -1;
        } else {
            return indexOfSupplementary(ch, fromIndex);
        }
    }

    /**
     * Handles (rare) calls of indexOf with a supplementary character.
     */
    private int indexOfSupplementary(int ch, int fromIndex) {
        if (Character.isValidCodePoint(ch)) {
            final char[] value = this.value;
            final char hi = Character.highSurrogate(ch);
            final char lo = Character.lowSurrogate(ch);
            final int max = value.length - 1;
            for (int i = fromIndex; i < max; i++) {
                if (value[i] == hi && value[i + 1] == lo) {
                    return i;
                }
            }
        }
        return -1;
    }

    public int lastIndexOf(int ch) {
        return lastIndexOf(ch, value.length - 1);
    }

    /**
     * Returns the index within this string of the last occurrence of
     * the specified character, searching backward starting at the
     * specified index. For values of <code>ch</code> in the range
     * from 0 to 0xFFFF (inclusive), the index returned is the largest
     * value <i>k</i> such that:
     * <blockquote><pre>
     * (this.charAt(<i>k</i>) == ch) && (<i>k</i> <= fromIndex)
     * </pre></blockquote>
     * is true. For other values of <code>ch</code>, it is the
     * largest value <i>k</i> such that:
     * <blockquote><pre>
     * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> <= fromIndex)
     * </pre></blockquote>
     * is true. In either case, if no such character occurs in this
     * string at or before position <code>fromIndex</code>, then
     * <code>-1</code> is returned.
     *
     * <p>All indices are specified in <code>char</code> values
     * (Unicode code units).
     *
     * @param   ch          a character (Unicode code point).
     * @param   fromIndex   the index to start the search from. There is no
     *          restriction on the value of <code>fromIndex</code>. If it is
     *          greater than or equal to the length of this string, it has
     *          the same effect as if it were equal to one less than the
     *          length of this string: this entire string may be searched.
     *          If it is negative, it has the same effect as if it were -1:
     *          -1 is returned.
     * @return  the index of the last occurrence of the character in the
     *          character sequence represented by this object that is less
     *          than or equal to <code>fromIndex</code>, or <code>-1</code>
     *          if the character does not occur before that point.
     */
    public int lastIndexOf(int ch, int fromIndex) {
        if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
            // handle most cases here (ch is a BMP code point or a
            // negative value (invalid code point))
            final char[] value = this.value;
            int i = Math.min(fromIndex, value.length - 1);
            for (; i >= 0; i--) {
                if (value[i] == ch) {
                    return i;
                }
            }
            return -1;
        } else {
            return lastIndexOfSupplementary(ch, fromIndex);
        }
    }

    /**
     * Handles (rare) calls of lastIndexOf with a supplementary character.
     */
    private int lastIndexOfSupplementary(int ch, int fromIndex) {
        if (Character.isValidCodePoint(ch)) {
            final char[] value = this.value;
            char hi = Character.highSurrogate(ch);
            char lo = Character.lowSurrogate(ch);
            int i = Math.min(fromIndex, value.length - 2);
            for (; i >= 0; i--) {
                if (value[i] == hi && value[i + 1] == lo) {
                    return i;
                }
            }
        }
        return -1;
    }


    public int indexOf(String str) {
        return indexOf(str, 0);
    }

    /**
     * Returns the index within this string of the first occurrence of the
     * specified substring, starting at the specified index.
     *
     * <p>The returned index is the smallest value <i>k</i> for which:
     * <blockquote><pre>
     * <i>k</i> >= fromIndex && this.startsWith(str, <i>k</i>)
     * </pre></blockquote>
     * If no such value of <i>k</i> exists, then {@code -1} is returned.
     *
     * @param   str         the substring to search for.
     * @param   fromIndex   the index from which to start the search.
     * @return  the index of the first occurrence of the specified substring,
     *          starting at the specified index,
     *          or {@code -1} if there is no such occurrence.
     */
    public int indexOf(String str, int fromIndex) {
        return indexOf(value, 0, value.length,
                str.value, 0, str.value.length, fromIndex);
    }

    /**
     * Code shared by String and StringBuffer to do searches. The
     * source is the character array being searched, and the target
     * is the string being searched for.
     *
     * @param   source       the characters being searched.
     * @param   sourceOffset offset of the source string.
     * @param   sourceCount  count of the source string.
     * @param   target       the characters being searched for.
     * @param   targetOffset offset of the target string.
     * @param   targetCount  count of the target string.
     * @param   fromIndex    the index to begin searching from.
     */
    static int indexOf(char[] source, int sourceOffset, int sourceCount,
            char[] target, int targetOffset, int targetCount,
            int fromIndex) {
        if (fromIndex >= sourceCount) {
            return (targetCount == 0 ? sourceCount : -1);
        }
        if (fromIndex < 0) {
            fromIndex = 0;
        }
        if (targetCount == 0) {
            return fromIndex;
        }
        char first = target[targetOffset];
        int max = sourceOffset + (sourceCount - targetCount);
        for (int i = sourceOffset + fromIndex; i <= max; i++) {
            /* Look for first character. */
            if (source[i] != first) {
                while (++i <= max && source[i] != first);
            }
            /* Found first character, now look at the rest of v2 */
            if (i <= max) {
                int j = i + 1;
                int end = j + targetCount - 1;
                for (int k = targetOffset + 1; j < end && source[j]
                        == target[k]; j++, k++);
                if (j == end) {
                    /* Found whole string. */
                    return i - sourceOffset;
                }
            }
        }
        return -1;
    }

    public int lastIndexOf(String str) {
        return lastIndexOf(str, value.length);
    }

    /**
     * Returns the index within this string of the last occurrence of the
     * specified substring, searching backward starting at the specified index.
     *
     * <p>The returned index is the largest value <i>k</i> for which:
     * <blockquote><pre>
     * <i>k</i> <= fromIndex && this.startsWith(str, <i>k</i>)
     * </pre></blockquote>
     * If no such value of <i>k</i> exists, then {@code -1} is returned.
     *
     * @param   str         the substring to search for.
     * @param   fromIndex   the index to start the search from.
     * @return  the index of the last occurrence of the specified substring,
     *          searching backward from the specified index,
     *          or {@code -1} if there is no such occurrence.
     */
    public int lastIndexOf(String str, int fromIndex) {
        return lastIndexOf(value, 0, value.length,
                str.value, 0, str.value.length, fromIndex);
    }

    /**
     * Code shared by String and StringBuffer to do searches. The
     * source is the character array being searched, and the target
     * is the string being searched for.
     *
     * @param   source       the characters being searched.
     * @param   sourceOffset offset of the source string.
     * @param   sourceCount  count of the source string.
     * @param   target       the characters being searched for.
     * @param   targetOffset offset of the target string.
     * @param   targetCount  count of the target string.
     * @param   fromIndex    the index to begin searching from.
     */
    static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
            char[] target, int targetOffset, int targetCount,
            int fromIndex) {
        /*
         * Check arguments; return immediately where possible. For
         * consistency, don't check for null str.
         */
        int rightIndex = sourceCount - targetCount;
        if (fromIndex < 0) {
            return -1;
        }
        if (fromIndex > rightIndex) {
            fromIndex = rightIndex;
        }
        /* Empty string always matches. */
        if (targetCount == 0) {
            return fromIndex;
        }
        int strLastIndex = targetOffset + targetCount - 1;
        char strLastChar = target[strLastIndex];
        int min = sourceOffset + targetCount - 1;
        int i = min + fromIndex;
        startSearchForLastChar:
        while (true) {
            while (i >= min && source[i] != strLastChar) {
                i--;
            }
            if (i < min) {
                return -1;
            }
            int j = i - 1;
            int start = j - (targetCount - 1);
            int k = strLastIndex - 1;
            while (j > start) {
                if (source[j--] != target[k--]) {
                    i--;
                    continue startSearchForLastChar;
                }
            }
            return start - sourceOffset + 1;
        }
    }

    public String substring(int beginIndex) {
        if (beginIndex < 0) {
            throw new StringIndexOutOfBoundsException(beginIndex);
        }
        int subLen = value.length - beginIndex;
        if (subLen < 0) {
            throw new StringIndexOutOfBoundsException(subLen);
        }
        return (beginIndex == 0) ? this : new String(value, beginIndex, subLen);
    }

    public String substring(int beginIndex, int endIndex) {
        if (beginIndex < 0) {
            throw new StringIndexOutOfBoundsException(beginIndex);
        }
        if (endIndex > value.length) {
            throw new StringIndexOutOfBoundsException(endIndex);
        }
        int subLen = endIndex - beginIndex;
        if (subLen < 0) {
            throw new StringIndexOutOfBoundsException(subLen);
        }

        return ((beginIndex == 0) && (endIndex == value.length)) ? this : new String(value, beginIndex, subLen

    );}

    public CharSequence subSequence(int beginIndex, int endIndex) {
        return this.substring(beginIndex, endIndex);
    }

    /**
     * 字符串拼接
    public String concat(String str) {
        int otherLen = str.length();
        if (otherLen == 0) {
            return this;
        }
        int len = value.length;
        char buf[] = Arrays.copyOf(value, len + otherLen);
        str.getChars(buf, len);
        return new String(buf, true);
    }

    /**
     * Returns a new string resulting from replacing all occurrences of
     * <code>oldChar</code> in this string with <code>newChar</code>.
     * <p>
     * If the character <code>oldChar</code> does not occur in the
     * character sequence represented by this <code>String</code> object,
     * then a reference to this <code>String</code> object is returned.
     * Otherwise, a new <code>String</code> object is created that
     * represents a character sequence identical to the character sequence
     * represented by this <code>String</code> object, except that every
     * occurrence of <code>oldChar</code> is replaced by an occurrence
     * of <code>newChar</code>.
     * <p>
     * Examples:
     * <blockquote><pre>
     * "mesquite in your cellar".replace('e', 'o')
     *         returns "mosquito in your collar"
     * "the war of baronets".replace('r', 'y')
     *         returns "the way of bayonets"
     * "sparring with a purple porpoise".replace('p', 't')
     *         returns "starring with a turtle tortoise"
     * "JonL".replace('q', 'x') returns "JonL" (no change)
     * </pre></blockquote>
     *
     * @param   oldChar   the old character.
     * @param   newChar   the new character.
     * @return  a string derived from this string by replacing every
     *          occurrence of <code>oldChar</code> with <code>newChar</code>.
     */
    public String replace(char oldChar, char newChar) {
        if (oldChar != newChar) {
            int len = value.length;
            int i = -1;
            char[] val = value; /* avoid getfield opcode */
            while (++i < len) {
                if (val[i] == oldChar) {
                    break;
                }
            }
            if (i < len) {
                char buf[] = new char[len];
                for (int j = 0; j < i; j++) {
                    buf[j] = val[j];
                }
                while (i < len) {
                    char c = val[i];
                    buf[i] = (c == oldChar) ? newChar : c;
                    i++;
                }
                return new String(buf, true);
            }
        }
        return this;
    }

    /**
     * Tells whether or not this string matches the given <a
     * href="../util/regex/Pattern.html#sum">regular expression</a>.
     *
     * <p> An invocation of this method of the form
     * <i>str</i><tt>.matches(</tt><i>regex</i><tt>)</tt> yields exactly the
     * same result as the expression
     *
     * <blockquote><tt> {@link java.util.regex.Pattern}.{@link
     * java.util.regex.Pattern#matches(String,CharSequence)
     * matches}(</tt><i>regex</i><tt>,</tt> <i>str</i><tt>)</tt></blockquote>
     *
     * @param   regex
     *          the regular expression to which this string is to be matched
     *
     * @return  <tt>true</tt> if, and only if, this string matches the
     *          given regular expression
     *
     * @throws  PatternSyntaxException
     *          if the regular expression's syntax is invalid
     *
     * @see java.util.regex.Pattern
     *
     * @since 1.4
     * @spec JSR-51
     */
    public boolean matches(String regex) {
        return Pattern.matches(regex, this);
    }

    /**
     * Returns true if and only if this string contains the specified
     * sequence of char values.
     *
     * @param s the sequence to search for
     * @return true if this string contains <code>s</code>, false otherwise
     * @throws NullPointerException if <code>s</code> is <code>null</code>
     * @since 1.5
     */
    public boolean contains(CharSequence s) {
        return indexOf(s.toString()) > -1;
    }

    /**
     * Replaces the first substring of this string that matches the given <a
     * href="../util/regex/Pattern.html#sum">regular expression</a> with the
     * given replacement.
     *
     * <p> An invocation of this method of the form
     * <i>str</i><tt>.replaceFirst(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
     * yields exactly the same result as the expression
     *
     * <blockquote><tt>
     * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
     * compile}(</tt><i>regex</i><tt>).{@link
     * java.util.regex.Pattern#matcher(java.lang.CharSequence)
     * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceFirst
     * replaceFirst}(</tt><i>repl</i><tt>)</tt></blockquote>
     *
     *<p>
     * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
     * replacement string may cause the results to be different than if it were
     * being treated as a literal replacement string; see
     * {@link java.util.regex.Matcher#replaceFirst}.
     * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
     * meaning of these characters, if desired.
     *
     * @param   regex
     *          the regular expression to which this string is to be matched
     * @param   replacement
     *          the string to be substituted for the first match
     *
     * @return  The resulting <tt>String</tt>
     *
     * @throws  PatternSyntaxException
     *          if the regular expression's syntax is invalid
     *
     * @see java.util.regex.Pattern
     *
     * @since 1.4
     * @spec JSR-51
     */
    public String replaceFirst(String regex, String replacement) {
        return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
    }

    public String replaceAll(String regex, String replacement) {
        return Pattern.compile(regex).matcher(this).replaceAll(replacement);
    }

    public String replace(CharSequence target, CharSequence replacement) {
        return Pattern.compile(target.toString(), Pattern.LITERAL).matcher(
                this).replaceAll(Matcher.quoteReplacement(replacement.toString()));
    }

    public String[] split(String regex, int limit) {
        /* fastpath if the regex is a
         (1)one-char String and this character is not one of the
            RegEx's meta characters ".$|()[{^?*+\\", or
         (2)two-char String and the first char is the backslash and
            the second is not the ascii digit or ascii letter.
         */
        char ch = 0;
        if (((regex.value.length == 1 &&
             ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
             (regex.length() == 2 &&
              regex.charAt(0) == '\\' &&
              (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
              ((ch-'a')|('z'-ch)) < 0 &&
              ((ch-'A')|('Z'-ch)) < 0)) &&
            (ch < Character.MIN_HIGH_SURROGATE ||
             ch > Character.MAX_LOW_SURROGATE))
        {
            int off = 0;
            int next = 0;
            boolean limited = limit > 0;
            ArrayList<String> list = new ArrayList<>();
            while ((next = indexOf(ch, off)) != -1) {
                if (!limited || list.size() < limit - 1) {
                    list.add(substring(off, next));
                    off = next + 1;
                } else {    // last one
                    //assert (list.size() == limit - 1);
                    list.add(substring(off, value.length));
                    off = value.length;
                    break;
                }
            }
            // If no match was found, return this
            if (off == 0)
                return new String[]{this};
            // Add remaining segment
            if (!limited || list.size() < limit)
                list.add(substring(off, value.length));
            // Construct result
            int resultSize = list.size();
            if (limit == 0)
                while (resultSize > 0 && list.get(resultSize - 1).length() == 0)
                    resultSize--;
            String[] result = new String[resultSize];
            return list.subList(0, resultSize).toArray(result);
        }
        return Pattern.compile(regex).split(this, limit);
    }

    public String[] split(String regex) {
        return split(regex, 0);
    }

    public String toLowerCase(Locale locale) {
        if (locale == null) {
            throw new NullPointerException();
        }
        int firstUpper;
        final int len = value.length;
        /* Now check if there are any characters that need to be changed. */
        scan: {
            for (firstUpper = 0 ; firstUpper < len; ) {
                char c = value[firstUpper];
                if ((c >= Character.MIN_HIGH_SURROGATE)
                        && (c <= Character.MAX_HIGH_SURROGATE)) {
                    int supplChar = codePointAt(firstUpper);
                    if (supplChar != Character.toLowerCase(supplChar)) {
                        break scan;
                    }
                    firstUpper += Character.charCount(supplChar);
                } else {
                    if (c != Character.toLowerCase(c)) {
                        break scan;
                    }
                    firstUpper++;
                }
            }
            return this;
        }
        char[] result = new char[len];
        int resultOffset = 0;  /* result may grow, so i+resultOffset
                                * is the write location in result */
        /* Just copy the first few lowerCase characters. */
        System.arraycopy(value, 0, result, 0, firstUpper);
        String lang = locale.getLanguage();
        boolean localeDependent =
                (lang == "tr" || lang == "az" || lang == "lt");
        char[] lowerCharArray;
        int lowerChar;
        int srcChar;
        int srcCount;
        for (int i = firstUpper; i < len; i += srcCount) {
            srcChar = (int)value[i];
            if ((char)srcChar >= Character.MIN_HIGH_SURROGATE
                    && (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
                srcChar = codePointAt(i);
                srcCount = Character.charCount(srcChar);
            } else {
                srcCount = 1;
            }
            if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA
                lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
            } else if (srcChar == '\u0130') { // LATIN CAPITAL LETTER I DOT
                lowerChar = Character.ERROR;
            } else {
                lowerChar = Character.toLowerCase(srcChar);
            }
            if ((lowerChar == Character.ERROR)
                    || (lowerChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
                if (lowerChar == Character.ERROR) {
                    if (!localeDependent && srcChar == '\u0130') {
                        lowerCharArray =
                                ConditionalSpecialCasing.toLowerCaseCharArray(this, i, Locale.ENGLISH);
                    } else {
                        lowerCharArray =
                                ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
                    }
                } else if (srcCount == 2) {
                    resultOffset += Character.toChars(lowerChar, result, i + resultOffset) - srcCount;
                    continue;
                } else {
                    lowerCharArray = Character.toChars(lowerChar);
                }
                /* Grow result if needed */
                int mapLen = lowerCharArray.length;
                if (mapLen > srcCount) {
                    char[] result2 = new char[result.length + mapLen - srcCount];
                    System.arraycopy(result, 0, result2, 0, i + resultOffset);
                    result = result2;
                }
                for (int x = 0; x < mapLen; ++x) {
                    result[i + resultOffset + x] = lowerCharArray[x];
                }
                resultOffset += (mapLen - srcCount);
            } else {
                result[i + resultOffset] = (char)lowerChar;
            }
        }
        return new String(result, 0, len + resultOffset);
    }

    public String toLowerCase() {
        return toLowerCase(Locale.getDefault());
    }

    public String toUpperCase(Locale locale) {
        if (locale == null) {
            throw new NullPointerException();
        }
        int firstLower;
        final int len = value.length;
        /* Now check if there are any characters that need to be changed. */
        scan: {
           for (firstLower = 0 ; firstLower < len; ) {
                int c = (int)value[firstLower];
                int srcCount;
                if ((c >= Character.MIN_HIGH_SURROGATE)
                        && (c <= Character.MAX_HIGH_SURROGATE)) {
                    c = codePointAt(firstLower);
                    srcCount = Character.charCount(c);
                } else {
                    srcCount = 1;
                }
                int upperCaseChar = Character.toUpperCaseEx(c);
                if ((upperCaseChar == Character.ERROR)
                        || (c != upperCaseChar)) {
                    break scan;
                }
                firstLower += srcCount;
            }
            return this;
        }
        char[] result = new char[len]; /* may grow */
        int resultOffset = 0;  /* result may grow, so i+resultOffset
         * is the write location in result */

    /* Just copy the first few upperCase characters. */
        System.arraycopy(value, 0, result, 0, firstLower);
        String lang = locale.getLanguage();
        boolean localeDependent =
                (lang == "tr" || lang == "az" || lang == "lt");
        char[] upperCharArray;
        int upperChar;
        int srcChar;
        int srcCount;
        for (int i = firstLower; i < len; i += srcCount) {
            srcChar = (int)value[i];
            if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
                (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
                srcChar = codePointAt(i);
                srcCount = Character.charCount(srcChar);
            } else {
                srcCount = 1;
            }
            if (localeDependent) {
                upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
            } else {
                upperChar = Character.toUpperCaseEx(srcChar);
            }
            if ((upperChar == Character.ERROR)
                    || (upperChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
                if (upperChar == Character.ERROR) {
                    if (localeDependent) {
                        upperCharArray =
                                ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
                    } else {
                        upperCharArray = Character.toUpperCaseCharArray(srcChar);
                    }
                } else if (srcCount == 2) {
                    resultOffset += Character.toChars(upperChar, result, i + resultOffset) - srcCount;
                    continue;
                } else {
                    upperCharArray = Character.toChars(upperChar);
                }
                /* Grow result if needed */
                int mapLen = upperCharArray.length;
                if (mapLen > srcCount) {
                    char[] result2 = new char[result.length + mapLen - srcCount];
                    System.arraycopy(result, 0, result2, 0, i + resultOffset);
                    result = result2;
                }
                for (int x = 0; x < mapLen; ++x) {
                    result[i + resultOffset + x] = upperCharArray[x];
                }
                resultOffset += (mapLen - srcCount);
            } else {
                result[i + resultOffset] = (char)upperChar;
            }
        }
        return new String(result, 0, len + resultOffset);
    }
//转换成大写
    public String toUpperCase() {
        return toUpperCase(Locale.getDefault());
    }
//去掉空格
    public String trim() {
        int len = value.length;
        int st = 0;
        char[] val = value;    /* avoid getfield opcode */
        while ((st < len) && (val[st] <= ' ')) {
            st++;
        }
        while ((st < len) && (val[len - 1] <= ' ')) {
            len--;
        }
        return ((st > 0) || (len < value.length)) ? substring(st, len) : this;
    }
//返回字符串
    public String toString() {
        return this;
    }

    /**
     * Converts this string to a new character array.
     * 将字符串转换成字符数组
     */
    public char[] toCharArray() {
        // Cannot use Arrays.copyOf because of class initialization order issues
        char result[] = new char[value.length];
        System.arraycopy(value, 0, result, 0, value.length);
        return result;
    }

    /**
     * Returns a formatted string using the specified format string and
     * arguments.
     *
     * <p> The locale always used is the one returned by {@link
     * java.util.Locale#getDefault() Locale.getDefault()}.
     *
     * @param  format
     *         A <a href="../util/Formatter.html#syntax">format string</a>
     *
     * @param  args
     *         Arguments referenced by the format specifiers in the format
     *         string.  If there are more arguments than format specifiers, the
     *         extra arguments are ignored.  The number of arguments is
     *         variable and may be zero.  The maximum number of arguments is
     *         limited by the maximum dimension of a Java array as defined by
     *         <cite>The Java™ Virtual Machine Specification</cite>.
     *         The behaviour on a
     *         <tt>null</tt> argument depends on the <a
     *         href="../util/Formatter.html#syntax">conversion</a>.
     *
     * @throws  IllegalFormatException
     *          If a format string contains an illegal syntax, a format
     *          specifier that is incompatible with the given arguments,
     *          insufficient arguments given the format string, or other
     *          illegal conditions.  For specification of all possible
     *          formatting errors, see the <a
     *          href="../util/Formatter.html#detail">Details</a> section of the
     *          formatter class specification.
     *
     * @throws  NullPointerException
     *          If the <tt>format</tt> is <tt>null</tt>
     *
     * @return  A formatted string
     *
     * @see  java.util.Formatter
     * @since  1.5
     */
    public static String format(String format, Object... args) {
        return new Formatter().format(format, args).toString();
    }

    public static String format(Locale l, String format, Object... args) {
        return new Formatter(l).format(format, args).toString();
    }

    /**
     * Returns the string representation of the <code>Object</code> argument.
     *
     * @param   obj   an <code>Object</code>.
     * @return  if the argument is <code>null</code>, then a string equal to
     *          <code>"null"</code>; otherwise, the value of
     *          <code>obj.toString()</code> is returned.
     * @see     java.lang.Object#toString()
     */
    public static String valueOf(Object obj) {
        return (obj == null) ? "null" : obj.toString();
    }

    /**
     * Returns the string representation of the <code>char</code> array
     * argument. The contents of the character array are copied; subsequent
     * modification of the character array does not affect the newly
     * created string.
     *
     * @param   data   a <code>char</code> array.
     * @return  a newly allocated string representing the same sequence of
     *          characters contained in the character array argument.
     */
    public static String valueOf(char data[]) {
        return new String(data);
    }

    /**
     * Returns the string representation of a specific subarray of the
     * <code>char</code> array argument.
     * <p>
     * The <code>offset</code> argument is the index of the first
     * character of the subarray. The <code>count</code> argument
     * specifies the length of the subarray. The contents of the subarray
     * are copied; subsequent modification of the character array does not
     * affect the newly created string.
     *
     * @param   data     the character array.
     * @param   offset   the initial offset into the value of the
     *                  <code>String</code>.
     * @param   count    the length of the value of the <code>String</code>.
     * @return  a string representing the sequence of characters contained
     *          in the subarray of the character array argument.
     * @exception IndexOutOfBoundsException if <code>offset</code> is
     *          negative, or <code>count</code> is negative, or
     *          <code>offset+count</code> is larger than
     *          <code>data.length</code>.
     */
    public static String valueOf(char data[], int offset, int count) {
        return new String(data, offset, count);
    }


    /**
     * Returns a String that represents the character sequence in the
     * array specified.
     *
     * @param   data     the character array.
     * @param   offset   initial offset of the subarray.
     * @param   count    length of the subarray.
     * @return  a <code>String</code> that contains the characters of the
     *          specified subarray of the character array.
     */
    public static String copyValueOf(char data[], int offset, int count) {
        // All public String constructors now copy the data.
        return new String(data, offset, count);
    }

    /**
     * Returns a String that represents the character sequence in the
     * array specified.
     *
     * @param   data   the character array.
     * @return  a <code>String</code> that contains the characters of the
     *          character array.
     */
    public static String copyValueOf(char data[]) {
        return new String(data);
    }

    /**
     * Returns the string representation of the <code>boolean</code> argument.
     *
     * @param   b   a <code>boolean</code>.
     * @return  if the argument is <code>true</code>, a string equal to
     *          <code>"true"</code> is returned; otherwise, a string equal to
     *          <code>"false"</code> is returned.
     */
    public static String valueOf(boolean b) {
        return b ? "true" : "false";
    }

    /**
     * Returns the string representation of the <code>char</code>
     * argument.
     *
     * @param   c   a <code>char</code>.
     * @return  a string of length <code>1</code> containing
     *          as its single character the argument <code>c</code>.
     */
    public static String valueOf(char c) {
        char data[] = {c};
        return new String(data, true);
    }

    /**
     * Returns the string representation of the <code>int</code> argument.
     * <p>
     * The representation is exactly the one returned by the
     * <code>Integer.toString</code> method of one argument.
     * 阅读源码,使人进步
     * @param   i   an <code>int</code>.
     * @return  a string representation of the <code>int</code> argument.
     * @see     java.lang.Integer#toString(int, int)
     */
    public static String valueOf(int i) {
        return Integer.toString(i);
    }

    public static String valueOf(long l) {
        return Long.toString(l);
    }

    public static String valueOf(float f) {
        return Float.toString(f);
    }

    public static String valueOf(double d) {
        return Double.toString(d);
    }

    /**
     * Returns a canonical representation for the string object.
     * A pool of strings, initially empty, is maintained privately by the class String
     * When the intern method is invoked, if the pool already contains a
     * string equal to this String object as determined by
     * the equals method, then the string from the pool is
     * returned. Otherwise, this String object is added to the
     * pool and a reference to this String object is returned.
     * It follows that for any two strings <code>s</code> and <code>t</code>,
     * <code>s.intern() == t.intern()</code> is <code>true</code>
     * if and only if <code>s.equals(t)</code> is <code>true</code>.
     * <p>
     * 不常用的一个方法,提到了String的共享池,为节省空间而设置的。
     * @return  a string that has the same contents as this string, but is
     *          guaranteed to be from a pool of unique strings.
     */
    public native String intern();

    /**
     * Seed value used for each alternative hash calculated.
     */
    private static final int HASHING_SEED;

    static {
        long nanos = System.nanoTime();
        long now = System.currentTimeMillis();
        int SEED_MATERIAL[] = {
                System.identityHashCode(String.class),
                System.identityHashCode(System.class),
                (int) (nanos >>> 32),
                (int) nanos,
                (int) (now >>> 32),
                (int) now,
                (int) (System.nanoTime() >>> 2)
        };

        // Use murmur3 to scramble the seeding material.
        // Inline implementation to avoid loading classes
        int h1 = 0;
        // body
        for (int k1 : SEED_MATERIAL) {
            k1 *= 0xcc9e2d51;
            k1 = (k1 << 15) | (k1 >>> 17);
            k1 *= 0x1b873593;
            h1 ^= k1;
            h1 = (h1 << 13) | (h1 >>> 19);
            h1 = h1 * 5 + 0xe6546b64;
        }
        // tail (always empty, as body is always 32-bit chunks)
        // finalization
        h1 ^= SEED_MATERIAL.length * 4;
        // finalization mix force all bits of a hash block to avalanche
        h1 ^= h1 >>> 16;
        h1 *= 0x85ebca6b;
        h1 ^= h1 >>> 13;
        h1 *= 0xc2b2ae35;
        h1 ^= h1 >>> 16;
        HASHING_SEED = h1;
    }

    /**
     * Cached value of the alternative hashing algorithm result
     */
    private transient int hash32 = 0;

    /**
     * Calculates a 32-bit hash value for this string.
     * 阅读源码,使人进步
     * @return a 32-bit hash value for this string.
     */
    int hash32() {
        int h = hash32;
        if (0 == h) {
           // harmless data race on hash32 here.
           h = sun.misc.Hashing.murmur3_32(HASHING_SEED, value, 0, value.length);
           // ensure result is not zero to avoid recalcing
           h = (0 != h) ? h : 1;
           hash32 = h;
        }
        return h;
    }
}


你可能感兴趣的:(java基础,String,StringBuilder,StringBuffer)