- WebSocket调试神器对决:Apipost VS Apifox
你以为所有API工具都能玩转WebSocket?当你的APP需要实时股票行情推送,当你的游戏要处理千人同屏交互,当你的IM系统必须保障消息零延迟——传统HTTP协议的"一问一答"模式瞬间破功。此刻WebSocket协议才是真正的救世主,这个全双工通信协议能让客户端与服务器建立"永不挂断的热线",但掌握这把利器的开发者们,却常常在调试环节摔得鼻青脸肿:▎传统调试:手写JavaScript+浏览器Co
- AI 芯片全解析:定义、市场趋势与主流芯片对比
嵌入式Jerry
AI人工智能物联网嵌入式硬件服务器运维
1.引言:什么是AI芯片?随着人工智能(AI)的快速发展,AI计算的需求不断增长,从云计算到边缘计算,AI芯片成为推动智能化时代的核心动力。那么,什么样的芯片才算AI芯片?与普通处理器(如CPU、GPU)相比,AI芯片有什么不同?本文将详细解析AI芯片的定义、核心特性、市场上的流行产品(国内外),以及AI芯片的定位与发展趋势。2.什么才算AI芯片?2.1AI芯片的核心特性AI芯片专为神经网络计算、
- 分布式和微服务的理解
涛粒子
分布式微服务架构
分布式系统概念:分布式系统是由多个通过网络连接的节点组成的系统,这些节点分布在不同的地理位置或计算机上,它们相互协作,共同完成一个或多个任务,对用户或外部系统而言,就好像是一个单一的、统一的系统。核心特性分布性:系统的组件分布在多个节点上,数据也可能分散存储在不同的地方。例如,一个大型电商系统的用户数据可能存储在一组数据库服务器上,而商品数据存储在另一组服务器上。并发性:多个节点可以同时处理不同的
- C++和Unity相比易语言有哪些优势?
c++unity
C++和Unity(主要使用C#)相比易语言,具有以下显著优势:性能优势高效计算:C++是一种编译型语言,能够直接与硬件交互,提供高性能的计算能力,尤其适合处理复杂的数学运算、物理模拟和图形渲染。内存管理:C++允许开发者手动管理内存,能够更高效地利用系统资源,减少内存泄漏和性能瓶颈。功能强大底层访问:C++可以访问底层系统资源,如硬件设备、操作系统API等,这在开发高性能游戏或复杂应用时非常关键
- 预训练模型微调与下游任务迁移学习技术
AGI大模型与大数据研究院
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍机器学习技术近年来在计算机视觉、自然语言处理等领域取得了飞速发展,这离不开大规模预训练模型的贡献。预训练模型通过在海量数据上的自监督学习,学习到了丰富的特征表示,为下游任务提供了强大的初始化。而对预训练模型进行有效的微调,可以充分利用预训练知识,在有限数据上快速达到出色的性能。此外,迁移学习技术也为模型在不同任务间的知识复用提供了有效途径。本文将详细介绍预训练模型微调与下游任务迁移学习
- 什么是预训练语言模型下游任务?
衣衣困
语言模型人工智能自然语言处理
问题:Word2Vec模型是预训练模型吗?由于训练的特性,word2Vec模型一定是与训练模型。给定一个词先使用独热编码然后使用预训练好的Q矩阵得到这个词的词向量。这里指的是词向量本身就是预训练的语言模型。什么是下游任务?在自然语言处理(NLP)和机器学习领域,下游任务(downstreamtasks)指的是使用已经训练好的模型或表示(如词向量、预训练的模型等)来解决的具体任务。这些任务通常依赖于
- DeepSeek:大模型领域的创新力量
Kurbaneli
服务器
在人工智能大模型蓬勃发展的时代,DeepSeek以其独特的技术优势和广泛的应用潜力,迅速在市场中崭露头角。自年初发布以来,DeepSeek引发了行业内外的高度关注,对众多领域的发展产生了深远影响。一、技术优势剖析DeepSeek在技术层面展现出了诸多亮点。其核心的语言模型架构经过精心设计与优化,能够高效处理海量文本数据,实现精准的语义理解和生成。在自然语言处理任务中,无论是基础的文本翻译、问答系统
- C#批量压缩并上载CSV数据文件到Box企业云盘
weixin_30777913
c#开发语言
C#.NET8实现Windows下批量压缩csv文件为zip文件,然后异步上传到box企业云服务网盘路径,实现异常处理和写入运行状态日志,参数来自ini配置文件。C#.NET8代码示例,包含INI配置读取、CSV文件压缩、Box上传、异步处理和日志记录功能:usingSystem.Collections.Concurrent;usingSystem.IO.Compression;usingIniP
- C#将Box企业网盘里的文件批量上载到S3,并导入Redshift
weixin_30777913
c#开发语言aws
用C#.NET8将Box企业网盘里一个目录下的所有文件全部上载到S3的一个目录下,这些文件假设全是gzip压缩文件,然后全部导入AmazonRedshift数据库,要实现异步处理,异常处理和输出运行状态日志,所有参数信息来自ini配置文件。将Box企业网盘里的文件上传到AmazonS3,你需要分别使用BoxAPI和AmazonS3API。在C#.NET8中,你可以使用相应的SDK来简化这个过程。以
- 【C#】内存的使用和释放
wangnaisheng
C#c#
在C#中,内存管理主要是由.NET的垃圾回收器(GarbageCollector,GC)自动处理的。然而,了解如何正确地使用和释放内存对于编写高效且可靠的代码非常重要。以下是一些关键点和最佳实践:1.内存分配托管资源:托管资源是由CLR自动管理的,例如对象实例、字符串等。当创建一个对象时,CLR会从托管堆中分配内存。非托管资源:非托管资源包括文件句柄、数据库连接、GDI+对象等。这些资源需要显式地
- 大语言模型原理与工程实践:大语言模型推理工程推理加速:算子优化
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍近年来,大语言模型(LargeLanguageModel,LLM)在自然语言处理(NLP)领域取得了显著的进展。其中,推理(Inference)过程是大语言模型的核心环节之一。然而,随着模型规模的不断扩大,推理过程中的计算复杂度和延时也逐渐成为制约模型应用的重要因素。因此,如何实现大语言模型推理工程的推理加速,成为研究者和工程师迫切需要解决的问题。2.核心概念与联系在本文中,我们将深入
- 【Unity试题】最全的Unity面试题
coder_yz(ง •_•)ง
unity3dUnity面试题3d面试
这个是我刚刚整理出的Unity面试题,为了帮助大家面试,同时帮助大家更好地复习Unity知识点,如果大家发现有什么错误,(包括错别字和知识点),或者发现哪里描述的不清晰,请在下面留言,我会重新更新,希望大家共同来帮助开发者一:什么是协同程序?在主线程运行的同时开启另一段逻辑处理,来协助当前程序的执行,协程很像多线程,但是不是多线程,Unity的协程实在每帧结束之后去检测yield的条件是否满足。二
- AI辅助的企业估值报告生成器
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能人工智能ai
AI辅助的企业估值报告生成器关键词AI辅助估值企业估值报告数据处理机器学习算法报告生成器摘要本文将探讨如何利用人工智能技术辅助企业估值报告的生成。通过分析估值报告的重要性、AI技术在估值报告中的应用场景、估值模型与数据处理方法,以及机器学习算法在估值中的应用,本文旨在为企业和投资者提供一个高效、准确、可视化的估值报告生成解决方案。同时,本文还将介绍一个估值报告生成器的实现过程,并通过实际案例进行分
- 大数据面试临阵磨枪不知看什么?看这份心理就有底了-大数据常用技术栈常见面试100道题
大模型大数据攻城狮
大数据面试职场和发展面试题数据仓库算法
目录1描述Hadoop的架构和它的主要组件。2MapReduce的工作原理是什么?3什么是YARN,它在Hadoop中扮演什么角色?4Spark和HadoopMapReduce的区别是什么?5如何在Spark中实现数据的持久化?6SparkStreaming的工作原理是什么?7如何优化Spark作业的性能?8描述HBase的架构和它的主要组件。9HBase的读写流程是怎样的?10HBase如何处理
- Spark使用Parqute存储方式有什么好处
冰火同学
Sparkspark
列式存储:压缩效率和查询效率谓词下推存储层:查询数据块生态兼容性高:Spark,hadoop等都兼容
- Windows逆向工程入门之MASM 选择结构
0xCC说逆向
windows汇编安全逆向病毒
公开视频->链接点击跳转公开课程博客首页->链接点击跳转博客主页目录一、标志寄存器1.1核心标志位功能详解二、条件跳转指令系统分类2.1无符号数跳转指令集2.2有符号数跳转指令集2.3特殊检测指令三、MASM高级语法解析3.1结构化伪指令转换机制3.2复杂条件表达式处理四、逆向工程实战技巧4.1控制流还原方法论一、标志寄存器1.1核心标志位功能详解标志位名称触发场景逆向工程意义CF进位标志无符号运
- SQL技能大进阶:解锁高级技巧,提升数据处理效率
大雨淅淅
数据库sql数据库
目录一、引言二、10个不可不知的高级SQL技巧(一)窗口函数:数据分析的得力助手(二)公共表达式(CTEs):让查询更清晰(三)聚合函数:数据汇总的利器(四)递归CTEs:处理分层数据的神器(五)临时函数:简化代码的好帮手(六)使用CASEWHEN枢转数据:灵活处理数据(七)EXCEPTvsNOTIN:查询数据的不同方式(八)自联结:在同一表中查找关联数据(九)RankvsDenseRankvsR
- Spring Boot 处理异步请求(DeferredResult 基础案例、DeferredResult 超时案例、DeferredResult 扩展案例、DeferredResult 方法汇总)
我命由我12345
Java-简化库与框架编程springbootjavajava-ee后端springintellij-ideaintellijidea
一、DeferredResultDeferredResult是SpringFramework提供的一个用于处理异步请求的类DeferredResult使开发者可以将请求的处理结果延迟到另一个线程中完成DeferredResult适合处理耗时操作或需要等待事件触发的场景DeferredResult的核心思想是将请求挂起,直到在另一个线程中完成操作后,再将结果返回给客户端二、DeferredResul
- Linux----进程间的通信
weixin_51790712
linux运维服务器
进程间通信之信号:信号--软中断中断信号---中断源中断(信号)处理程序---负责对该中断(信号)做出反应的//信号处理函数的注册函数#includetypedefvoid(*sighandler_t)(int);sighandler_tsignal(intsignum,sighandler_thandler);功能:给signum信号设置一个信号处理函数参数:@signum要处理的信号@hand
- 微调(Fine-tuning)
路野yue
人工智能深度学习
微调(Fine-tuning)是自然语言处理(NLP)和深度学习中的一种常见技术,用于将预训练模型(Pre-trainedModel)适配到特定任务上。它的核心思想是:在预训练模型的基础上,通过少量任务相关的数据进一步训练模型,使其更好地适应目标任务。1.微调的核心思想预训练模型:像BERT、GPT这样的模型,已经在大量通用文本数据上进行了预训练,学习到了丰富的语言知识(如语法、语义、上下文关系等
- Flink SQL的Top-N实战
听挽风讲大数据
Flinkflink大数据
1Top-N目前仅Blink计划器支持Top-N。Top-N查询时根据列排序找到N个最大或最小的值。最大值集合最小值集都被视为是一种Top-N的查询。若在批处理或流处理的表中需要显示出满足条件的N个最底层记录或最顶层记录,Top-N查询将会十分有用。得到的结果集将可以进行进一步的分析。Flink使用OVER窗口条件和过滤条件相结合以进行Top-N查询。利用OVER窗口的PARTITIONBY子句的
- 矢量化的步骤
create_right
GIS
1、扫描地图矢量化是把栅格数据转换成矢量数据的处理过程。扫描是纸质地图矢量化的第一步,它将纸质地图转化为计算机可以识别的数字形式。2、图像预处理图像预处理主要是消除图像中无关的信息,恢复有用的真实信息。图像预处理一般包括去噪声、几何纠正、投影变换等。1、几何校正由于地图受介质或存放条件等因素的影响,地图的纸张容易发生变形,或者遥感影像本身就存在着几何变形。几何校正最常用的方法是仿射变换法。2、投影
- MySQLvs Redis 事务:核心差异详解(简单易懂)
以恒1
redis数据库缓存
MySQLvsRedis事务:核心差异详解(简单易懂)一、事务定义对比特性MySQL事务Redis事务事务模型符合ACID(原子性、一致性、隔离性、持久性)非严格ACID,更接近“命令批处理”核心命令BEGIN,COMMIT,ROLLBACKMULTI,EXEC,DISCARD,WATCH设计目标保证数据强一致性实现命令批量执行的原子性底层实现基于日志(Redo/UndoLog)和锁机制基于命令队
- 基于Arcgis的python脚本实现相邻矢量面的高度字段取平均值
GIS从业者
Python君arcgispython开发语言
背景在地理信息系统(GIS)数据处理或三维建模等实际应用场景中,我们常常会遇到需要对矢量面数据进行精细化处理的需求。其中一个常见的任务便是对相邻的矢量面中的高度字段开展特定操作。具体而言,当我们在分析一系列相互毗邻的矢量面时,若发现相邻的矢量面之间高度差值小于预先设定的阈值,那么就需要采取一种数据优化策略,即把这些相邻矢量面的高度统一取平均值。这样做的目的在于使数据更加平滑、合理,减少因局部高度异
- AI边缘处理设备怎么合理分配宽带和运行资源
码农的日常搅屎棍
嵌入式硬件深度学习神经网络
在AI边缘处理设备中,合理分配宽带和运行资源(如计算能力、内存、存储、功耗等)是确保设备高效运行的关键。边缘设备通常面临有限的资源,但需要处理大量的数据流和计算任务,尤其是在AI推理和实时数据处理的场景下。为了优化性能和资源使用,以下是一些合理的分配和优化策略:1.网络带宽管理边缘设备通常连接到本地网络或直接与云端进行通信。有效的带宽管理能够确保数据传输的稳定性和效率。以下策略有助于合理分配宽带资
- 袋鼠数据库工具 6.4 AI 版已上线
自不量力的A同学
数据库人工智能
袋鼠数据库工具6.4AI版已上线,以下是其相关介绍1:模型支持方面新增模型支持:增加了对DeepSeekR1模型的支持,进一步丰富了AI能力的模型选择,用户可以根据具体需求和场景,利用DeepSeekR1模型的优势来处理相关任务。界面优化方面AIChat界面改进:对AIChat界面进行了优化,可能在交互体验、显示效果、功能布局等方面进行了调整和完善,使用户与AI的对话交流更加顺畅、便捷,提高用户获
- AI应用开发究竟难在哪?万字解析技术挑战与实践突破【系列文章】
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型ChatGPT人工智能ai
AI应用开发究竟难在哪?万字解析技术挑战与实践突破【系列文章】文章目录AI应用开发究竟难在哪?万字解析技术挑战与实践突破【系列文章】1.AI应用开发究竟难在哪?万字解析技术挑战与实践突破引言:当AI成为业务标配的阵痛期一、生态丛林:AI应用开发的复杂性迷宫1.1数据处理流程的千层饼结构1.2技术选型的决策困局1.3跨团队协作的沟通鸿沟二、积木难题:大模型能力的组合艺术2.1模块化设计的范式革命2.
- Deepseek的底层架构思维构成
堕落年代
AI架构人工智能
专业解释一、核心架构组件:注意力机制与专家模型的革新1.多头潜在注意力机制(MLA)功能与作用:MLA是DeepSeek对传统Transformer注意力机制的创新改进。通过低秩联合压缩技术,将键(Key)和值(Value)矩阵压缩到潜在空间,显著减少推理时的显存占用。例如,MLA可将显存需求降至传统多头注意力(MHA)的个位数百分比。优势:显存效率:KV缓存需求降低80%以上,支持更长上下文处理
- 《DataWorks:为人工智能算法筑牢高质量数据根基》
人工智能深度学习
在当今数字化时代,人工智能(AI)技术的迅猛发展深刻地改变着各个行业的面貌。从智能推荐系统到医疗影像诊断,从自动驾驶到自然语言处理,AI正以前所未有的速度渗透到我们生活和工作的方方面面。而在这一系列AI应用的背后,高质量的训练数据是其能够发挥强大效能的关键所在。就如同巧妇难为无米之炊,没有优质的数据,再先进的AI算法也难以施展拳脚。阿里巴巴的DataWorks,作为一款强大的大数据开发治理平台,在
- 一起来动手实现一个ai聊天对话
本文,我们将根据前文来实现一个ai聊天对话项目,感受真实的业务。项目技术栈vite---一个前端工程构建工具。antd---一个reactui组件库。@ant-design/icons----一个react图标库。mockjs---模拟消息对话数据。dayjs---一个日期处理库react---一个javascript框架。typescript---javascript的超集。ew-message
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。