【Codeforces Round 333 (Div 2)D】【线段树 即时处理询问】Lipshitz Sequence 若干区间询问所有子区间的答案和 850ms
#include<stdio.h> #include<string.h> #include<ctype.h> #include<math.h> #include<iostream> #include<string> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> #include<algorithm> #include<time.h> using namespace std; void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);} #define MS(x,y) memset(x,y,sizeof(x)) #define MC(x,y) memcpy(x,y,sizeof(x)) #define MP(x,y) make_pair(x,y) #define ls o<<1 #define rs o<<1|1 typedef long long LL; typedef unsigned long long UL; typedef unsigned int UI; template <class T> inline void gmax(T &a,T b){if(b>a)a=b;} template <class T> inline void gmin(T &a,T b){if(b<a)a=b;} const int N=1e5+10,M=0,Z=1e9+7,ms63=1061109567; int n,m; int l,r; int vv[N],v[N]; struct A { int l,r,max; }a[1<<18]; void build(int o,int l,int r) { a[o].l=l; a[o].r=r; if(l==r) { a[o].max=v[l]; return; } int mid=(l+r)>>1; build(ls,l,mid); build(rs,mid+1,r); a[o].max=max(a[ls].max,a[rs].max); } int V; int trylft(int o,int l,int r) { if(a[o].max<V)return l; else if(a[o].l==a[o].r)return r+1; int mid=(a[o].l+a[o].r)>>1; if(a[o].l==l&&a[o].r==r) { if(a[rs].max<V)return trylft(ls,l,mid); else return trylft(rs,mid+1,r); } if(r<=mid)return trylft(ls,l,r); else if(l>mid)return trylft(rs,l,r); else { int pos=trylft(rs,mid+1,r); if(pos>mid+1)return pos; else return trylft(ls,l,mid); } } int tryrgt(int o,int l,int r) { if(a[o].max<=V)return r; else if(a[o].l==a[o].r)return l-1; int mid=(a[o].l+a[o].r)>>1; if(a[o].l==l&&a[o].r==r) { if(a[ls].max<=V)return tryrgt(rs,mid+1,r); else return tryrgt(ls,l,mid); } if(r<=mid)return tryrgt(ls,l,r); else if(l>mid)return tryrgt(rs,l,r); else { int pos=tryrgt(ls,l,mid); if(pos<mid)return pos; else return tryrgt(rs,mid+1,r); } } int main() { while(~scanf("%d%d",&n,&m)) { for(int i=1;i<=n;++i)scanf("%d",&vv[i]); --n;for(int i=1;i<=n;++i)v[i]=abs(vv[i+1]-vv[i]); build(1,1,n); for(int i=1;i<=m;++i) { scanf("%d%d",&l,&r);--r; LL ans=0; for(int j=l;j<=r;j++) { V=v[j]; LL lft=j;if(l<j)lft=trylft(1,l,j-1); LL rgt=j;if(r>j)rgt=tryrgt(1,j+1,r); ans+=(j+1-lft)*(rgt+1-j)*V; } printf("%lld\n",ans); } } return 0; } /* 【trick&&吐槽】 这道题我一开始时,用的是线段树,常数本来就大。 自己写的时候还没做什么优化,于是提交时就被卡掉了啊TwT。 而且这还是——我在比赛结束倒计时7s时过了第一组数据的代码, 在倒计时5s点到提交的代码, 在倒计时1s交上去的代码哇! 瞬间跑到第46组数据,瞬间喜极而泣。 然而下一瞬间就tle on test 77了 QwQ。为何这样捉弄我?! 估计自己的代码,AC时间最多也就是1.2s,伤心!优化之后变成850ms,就AC掉了>_< 后来再经过离线预处理,时间可以降低到250ms(ST-RMQ)甚至是78ms(线段树) 【题意】 给你一个长度为n(2<=n<=1e5)的数vv[],每个数的数值为[0,1e9]范围。 然后再给你m(1<=m<=100)个询问,对于每个询问,给你一个[l,r]的区间(1<=l<r<=n), 我们的问题是,对于这个区间的所有子区间(C(len,2)+C(len,1)个),所有去年L()值的和是多少。 L(区间)所返回的结果是这样计算的,定理len为区间长度—— 1,如果len<2,返回0; 2,如果len>=2,返回max{向上取整(abs(vv[i]-vv[j])/(j-i)),j>i} 【类型】 线段树 【分析】 如何简化问题? 首先,我们不考虑询问有m个,对于一个询问区间,要如何求解? 然后,我们不考虑这个询问区间内的所有子区间,只拿出一个子区间出来,要如何求解? 这里就发现要先研究max{向上取整(abs(vv[i]-vv[j])/(j-i)),j>i}了。 然而我们很容易就发现,max{向上取整(abs(vv[i]-vv[j])/(j-i)),j>i}一定是取自—— max{向上取整(abs(vv[i]-vv[j])/(j-i)),j==i+1}中。 为什么呢? 我们用v[i]表示abs(vv[i+1]-v[i])/(i+1-i)=abs(vv[i+1]-v[i]) 那比如对于abs(vv[i+k]-vv[i])/k,其实可以表示为(±v[i]±v[i+1]±...±vv[i+k-1])/k 也就是说,如果j和i的差值大于1,那么得到的abs(vv[i]-vv[j])/(j-i),最大也不过是若干个v的平均值。 所以,得证: max{向上取整(abs(vv[i]-vv[j])/(j-i)),j>i}一定是取自—— max{向上取整(abs(vv[i]-vv[j])/(j-i)),j==i+1}中。 这个结论有什么用呢? 我们可以只用v[]就求出关于子区间权值的答案。 于是,对于一个询问区间,我们就有一种思路啦。 我们枚举子区间权值,然后看多少个子区间拥有这个权值就好。 具体如何实现呢? 就是我们在[l,r)范围,枚举每个v[],看看这个v[]向左向右做多能覆盖到哪里。 然后这个v[]对答案的贡献就是左区间个数*右区间个数*v[]。 假设对于一个v[]的贡献计算时间为w 这样,对于一个询问区间,时间复杂度就是O(len*w),总的时间复杂度是O(m*len*w),可达O(1e7w) 于是w就要求尽量在O(1)内完成,而O(log(n))的时间复杂度下TLE也就一点也不冤了。 然而我还是O(log(n))的时间复杂度。 我的做法是通过线段树来求: 1,某个点向左第一个比它大的位点,(为了防止重复,这里其实是向左第一个大于等于它的位置) 2,这个点向右第一个比它大的位点。 然后计算贡献,然后就AC啦~~ 不过——我们还是要引入其他做法 比如说:ST+二分。 我们可以先用ST初始化所有区间最值,然后再对于一个询问区间每个点,向左向右二分走到最左和最右的位置。 这种做法常数小很多,然而算法比较固定,出错率和稳定性大大提升。 然后在这个时候,我们发现了每个点可以向左向右延展的量,可以先做全局初始化。大大提高效率。 【时间复杂度&&优化】 O(m*len*log(n)) */
#include<stdio.h> #include<string.h> #include<ctype.h> #include<math.h> #include<iostream> #include<string> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> #include<algorithm> #include<time.h> using namespace std; void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);} #define MS(x,y) memset(x,y,sizeof(x)) #define MC(x,y) memcpy(x,y,sizeof(x)) #define MP(x,y) make_pair(x,y) #define ls o<<1 #define rs o<<1|1 typedef long long LL; typedef unsigned long long UL; typedef unsigned int UI; template <class T> inline void gmax(T &a,T b){if(b>a)a=b;} template <class T> inline void gmin(T &a,T b){if(b<a)a=b;} const int N=1e5+10,M=0,Z=1e9+7,ms63=1061109567; int n,m; int l,r; int vv[N],v[N],L[N],R[N]; int b[18]; int f[N][18]; void RMQinit() { int L=log(n+0.5)/log(2.0); for(int j=0;j<=L;++j)b[j]=1<<j; for(int i=1;i<=n;++i)f[i][0]=v[i]; for(int j=1;j<=L;++j) { int len=b[j-1]-1; for(int i=1;i+len<=n;++i) { f[i][j]=max(f[i][j-1],f[i+b[j-1]][j-1]); } } } int RMQmax(int l,int r) { int len=r-l+1; int k=log(len+0.5)/log(2.0); return max(f[l][k],f[r-b[k]+1][k]); } void init() { int l,r; for(int i=1;i<=n;++i) { l=1;r=i; while(l<r) { int m=(l+r)>>1; if(RMQmax(m,i-1)<v[i])r=m; else l=m+1; } L[i]=l; l=i,r=n; while(l<r) { int m=(l+r+1)>>1; if(RMQmax(i+1,m)<=v[i])l=m; else r=m-1; } R[i]=l; } } int main() { while(~scanf("%d%d",&n,&m)) { for(int i=1;i<=n;++i)scanf("%d",&vv[i]); --n;for(int i=1;i<=n;++i)v[i]=abs(vv[i+1]-vv[i]); RMQinit(); init(); for(int i=1;i<=m;++i) { scanf("%d%d",&l,&r);--r; LL ans=0; for(int j=l;j<=r;++j)ans+=(LL)(j-max(L[j],l)+1)*(min(R[j],r)-j+1)*v[j]; printf("%lld\n",ans); } } return 0; }
【Codeforces Round 333 (Div 2)D】【线段树 全局初始化】Lipshitz Sequence 若干区间询问所有子区间的答案和 78ms
#include<stdio.h> #include<string.h> #include<ctype.h> #include<math.h> #include<iostream> #include<string> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> #include<algorithm> #include<time.h> using namespace std; void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);} #define MS(x,y) memset(x,y,sizeof(x)) #define MC(x,y) memcpy(x,y,sizeof(x)) #define MP(x,y) make_pair(x,y) #define ls o<<1 #define rs o<<1|1 typedef long long LL; typedef unsigned long long UL; typedef unsigned int UI; template <class T> inline void gmax(T &a,T b){if(b>a)a=b;} template <class T> inline void gmin(T &a,T b){if(b<a)a=b;} const int N=1e5+10,M=0,Z=1e9+7,ms63=1061109567; int n,m; int l,r; int vv[N],v[N],L[N],R[N]; struct A { int l,r,max; }a[1<<18]; void build(int o,int l,int r) { a[o].l=l; a[o].r=r; if(l==r) { a[o].max=v[l]; return; } int mid=(l+r)>>1; build(ls,l,mid); build(rs,mid+1,r); a[o].max=max(a[ls].max,a[rs].max); } int V; int trylft(int o,int l,int r) { if(a[o].max<V)return l; else if(a[o].l==a[o].r)return r+1; int mid=(a[o].l+a[o].r)>>1; if(a[o].l==l&&a[o].r==r) { if(a[rs].max<V)return trylft(ls,l,mid); else return trylft(rs,mid+1,r); } if(r<=mid)return trylft(ls,l,r); else if(l>mid)return trylft(rs,l,r); else { int pos=trylft(rs,mid+1,r); if(pos>mid+1)return pos; else return trylft(ls,l,mid); } } int tryrgt(int o,int l,int r) { if(a[o].max<=V)return r; else if(a[o].l==a[o].r)return l-1; int mid=(a[o].l+a[o].r)>>1; if(a[o].l==l&&a[o].r==r) { if(a[ls].max<=V)return tryrgt(rs,mid+1,r); else return tryrgt(ls,l,mid); } if(r<=mid)return tryrgt(ls,l,r); else if(l>mid)return tryrgt(rs,l,r); else { int pos=tryrgt(ls,l,mid); if(pos<mid)return pos; else return tryrgt(rs,mid+1,r); } } void init() { for(int j=1;j<=n;++j) { V=v[j]; if(j==1)L[j]=1; else L[j]=trylft(1,1,j-1); if(j==n)R[j]=n; else R[j]=tryrgt(1,j+1,n); } } int main() { while(~scanf("%d%d",&n,&m)) { for(int i=1;i<=n;++i)scanf("%d",&vv[i]); --n;for(int i=1;i<=n;++i)v[i]=abs(vv[i+1]-vv[i]); build(1,1,n); init(); for(int i=1;i<=m;++i) { scanf("%d%d",&l,&r);--r; LL ans=0; for(int j=l;j<=r;++j)ans+=(LL)(j-max(L[j],l)+1)*(min(R[j],r)-j+1)*v[j]; printf("%lld\n",ans); } } return 0; }