【Codeforces Round 274 (Div 2)E】【DP 成段更新 打标记法 滚动数组】Riding in a Lift 乘坐k次电梯避免到达b层的方案数

Riding in a Lift
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let's number the floors from bottom to top with integers from 1 to n. Now you're on the floor number a. You are very bored, so you want to take the lift. Floor numberb has a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.

Let us suppose that at the moment you are on the floor number x (initially, you were on floor a). For another trip between floors you choose some floor with number y (y ≠ x) and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to the chosen y must be strictly less than the distance from the current floor x to floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x - y| < |x - b|. After the lift successfully transports you to floor y, you write down number y in your notepad.

Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift. As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109 + 7).

Input

The first line of the input contains four space-separated integers n, a, b, k (2 ≤ n ≤ 5000, 1 ≤ k ≤ 5000, 1 ≤ a, b ≤ n, a ≠ b).

Output

Print a single integer — the remainder after dividing the sought number of sequences by 1000000007 (109 + 7).

Sample test(s)
input
5 2 4 1
output
2
input
5 2 4 2
output
2
input
5 3 4 1
output
0
Note

Two sequences p1, p2, ..., pk and q1, q2, ..., qk are distinct, if there is such integer j (1 ≤ j ≤ k), that pj ≠ qj.

Notes to the samples:

  1. In the first sample after the first trip you are either on floor 1, or on floor 3, because |1 - 2| < |2 - 4| and |3 - 2| < |2 - 4|.
  2. In the second sample there are two possible sequences: (1, 2); (1, 3). You cannot choose floor 3 for the first trip because in this case no floor can be the floor for the second trip.
  3. In the third sample there are no sought sequences, because you cannot choose the floor for the first trip.
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=5000+5,M=0,Z=1e9+7,ms63=1061109567;
int n,k,u,v;
int l[N],r[N];
int f[2][N];
int w[N];
void add(int &x,int y)
{
	x+=y;
	if(x>=Z)x-=Z;
}
int main()
{
	while(~scanf("%d%d%d%d",&n,&u,&v,&k))
	{
		for(int i=1;i<=n;++i)if(i!=v)
		{
			int dis=abs(v-i)-1;
			l[i]=max(1,i-dis);
			r[i]=min(n,i+dis);
		}
		MS(f,0);
		int now=0;
		int nxt=1;
		f[now][u]=1;
		while(k--)
		{
			for(int i=1;i<=n;++i)
			{
				add(w[l[i]],f[now][i]);
				add(w[i],Z-f[now][i]);
				add(w[i+1],f[now][i]);
				add(w[r[i]+1],Z-f[now][i]);
			}
			int tmp=0;
			for(int i=1;i<=n;++i)
			{
				add(tmp,w[i]);w[i]=0;
				f[nxt][i]=tmp;
			}
			now^=1;
			nxt^=1;
		}
		int ans=0;
		for(int i=1;i<=n;++i)add(ans,f[now][i]);
		printf("%d\n",ans);
	}
	return 0;
}
/*
【trick&&吐槽】
这题好蠢,噗哈哈!
不过我忘记处理负数问题,有一处忘记把-=value写成+=Z-value  WA了一次。
粗心大意可真不好呢>_<

这题的空间需要5000*5000的int,我是用滚动数组实现的。
然而,这道题可是CF的题,其实开个25e6的数组也是可以的哦~,噗!

【题意】
有n(2<=n<=5000)层楼,我们初始在楼层u,我们知道,有一个楼层v,楼层v坏掉了。
我们随机乘坐k(1<=k<=5000)次电梯玩。为了防止到达坏掉的楼层v,我们有,
如果当前从x楼层出发,到达的楼层y,需要满足y≠x且|x-y|<|x-v|
问你,我们乘坐k次电梯的方案数是多少~~~

【类型】
DP 打标记法 滚动数组

【分析】
我们发现n和k都不大。O(nk)的算法即可AC这道题。于是有一个思路——
我们设f[i][j]表示乘坐了i次电梯,当前位置为j的方案数。
那么这个状态转移方程很好想。

定义lft[x]表示从电梯向下走最远到达的楼层,
	rgt[x]表示从电梯向上走最远到达的楼层。

那么,我们有——
f[i+1][lft[x]~x-1]+=f[i][x];
f[i+1][x+1~rgt[x]]+=f[i][x];
这是一个O(n^3)的DP。
然而,我们发现每次更新是一个区间更新,而且更新的数值是相同的。
所以我们采取一个打标记法。用w[x]记录从1~x积累来的转移方案数的单点增量。
根据定义,我们求w[x]的时候需要+=w[x-1]。

于是,我们对于从x点展开的转移。这样操作——
1,w[lft[x]]+=f[i][x];
2,w[x]-=f[i][x];
3,w[x+1]+=f[i][x];
4,w[rgt[x]+1]-=f[i][x];

然后,我们扫描一遍w[],就可以用O(n)时间完成第k次的转移。这道题就在O(n^2)的算法中实现啦。

【时间复杂度&&优化】
O(n^2)

*/


你可能感兴趣的:(codeforces,题库-CF,动态规划-线性DP,打标记法)