http://www.lydsy.com/JudgeOnline/problemset.php
注意到时间只能增加。
设dp[x]表示以x为根的子树中,到叶节点路径长度的最大值。
那么dp[x] = max{dp[v] + w}。
答案为∑dp[x] - (dp[v] + w)。
/* Footprints In The Blood Soaked Snow */ #include <cstdio> #include <algorithm> using namespace std; typedef long long LL; const int maxn = 500005; int n, head[maxn], cnt, rt; LL ans, dp[maxn]; struct _edge { int v, w, next; } g[maxn << 1]; inline void add(int u, int v, int w) { g[cnt] = (_edge){v, w, head[u]}; head[u] = cnt++; } inline int iread() { int f = 1, x = 0; char ch = getchar(); for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1; for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0'; return f * x; } inline void dfs(int x, int f) { for(int i = head[x]; ~i; i = g[i].next) if(g[i].v ^ f) { dfs(g[i].v, x); dp[x] = max(dp[x], dp[g[i].v] + g[i].w); } for(int i = head[x]; ~i; i = g[i].next) if(g[i].v ^ f) ans += dp[x] - dp[g[i].v] - g[i].w; } int main() { n = iread(); rt = iread(); for(int i = 1; i <= n; i++) head[i] = -1; cnt = 0; for(int i = 1; i < n; i++) { int u = iread(), v = iread(), w = iread(); add(u, v, w); add(v, u, w); } dfs(rt, 0); printf("%lld\n", ans); return 0; }