多路复用的方式是真正实用的服务器程序,非多路复用的网络程序只能作为学习或着陪测的角色。本文说下个人接触过的多路复用函数: select/poll/epoll/port。kqueue的*nix系统没接触过,估计熟悉了上面四种,kqueue也只是需要熟悉一下而已。
一、select模型
select原型:
int
select(
int
n, fd_set
*
readfds, fd_set
*
writefds, fd_set
*
exceptfds, struct timeval
*
timeout);
其中参数n表示监控的所有fd中最大值+1。
和select模型紧密结合的四个宏,含义不解释了:
FD_CLR(
int
fd, fd_set
*
set);
FD_ISSET(
int
fd, fd_set
*
set);
FD_SET(
int
fd, fd_set
*
set);
FD_ZERO(fd_set
*
set);
理解select模型的关键在于理解fd_set,为说明方便,取fd_set长度为1字节,fd_set中的每一bit可以对应一个文件描述符fd。则1字节长的fd_set最大可以对应8个fd。
(1)执行fd_set set; FD_ZERO(&set);则set用位表示是0000,0000。
(2)若fd=5,执行FD_SET(fd,&set);后set变为0001,0000(第5位置为1)
(3)若再加入fd=2,fd=1,则set变为0001,0011
(4)执行select(6,&set,0,0,0)阻塞等待
(5)若fd=1,fd=2上都发生可读事件,则select返回,此时set变为0000,0011。注意:没有事件发生的fd=5被清空。
基于上面的讨论,可以轻松得出select模型的特点:
(1)可监控的文件描述符个数取决与sizeof(fd_set)的值。我这边服务 器上sizeof(fd_set)=512,每bit表示一个文件描述符,则我服务器上支持的最大文件描述符是512*8=4096。据说可调,另有说虽 然可调,但调整上限受于编译内核时的变量值。本人对调整fd_set的大小不太感兴趣,参考http://www.cppblog.com/CppExplore/archive/2008/03/21/45061.html中的模型2(1)可以有效突破select可监控的文件描述符上限。
(2) 将fd加入select监控集的同时,还要再使用一个数据结构array保存放到select监控集中的fd,一是用于再select返回后,array 作为源数据和fd_set进行FD_ISSET判断。二是select返回后会把以前加入的但并无事件发生的fd清空,则每次开始select前都要重新 从array取得fd逐一加入(FD_ZERO最先),扫描array的同时取得fd最大值maxfd,用于select的第一个参数。
(3)可见select模型必须在select前循环array(加fd,取maxfd),select返回后循环array(FD_ISSET判断是否有时间发生)。
下面给一个伪码说明基本select模型的服务器模型:
array[slect_len];
nSock
=
0
;
array[nSock
++
]
=
listen_fd;(之前listen port已绑定并listen)
maxfd
=
listen_fd;
while
{
FD_ZERO(&set);
foreach (fd in array)
{
fd大于maxfd,则maxfd=fd
FD_SET(fd,&set)
}
res=select(maxfd+1,&set,0,0,0);
if(FD_ISSET(listen_fd,&set))
{
newfd=accept(listen_fd);
array[nsock++]=newfd;
if(--res<=0) continue
}
foreach 下标1开始 (fd in array)
{
if(FD_ISSET(fd,&set))
执行读等相关操作
如果错误或者关闭,则要删除该fd,将array中相应位置和最后一个元素互换就好,nsock减一
if(--res<=0) continue
}
}
二、poll模型
poll原型:
int
poll(struct pollfd
*
ufds, unsigned
int
nfds,
int
timeout);
struct pollfd
{
int fd; /**//* file descriptor */
short events; /**//* requested events */
short revents; /**//* returned events */
}
;
和select相比,两大改进:
(1)不再有fd个数的上限限制,可以将参数ufds想象成栈低指针,nfds是栈中元素个数,该栈可以无限制增长
(2) 引入pollfd结构,将fd信息、需要监控的事件、返回的事件分开保存,则poll返回后不会丢失fd信息和需要监控的事件信息,也就省略了 select模型中前面的循环操作,返回后的循环仍然不可避免。另每次poll阻塞操作都会自动把上次的revents清空。
poll的服务器模型伪码:
struct pollfd fds[POLL_LEN];
unsigned
int
nfds
=
0
;
fds[
0
].fd
=
server_sockfd;
fds[
0
].events
=
POLLIN
|
POLLPRI;
nfds
++
;
while
{
res=poll(fds,nfds,-1);
if(fds[0].revents&(POLLIN|POLLPRI)){执行accept并加入fds中,if(--res<=0)continue}
循环之后的fds,if(fds[i].revents&(POLLIN|POLLERR )){操作略if(--res<=0)continue}
}
注意select和poll中res的检测,可有效减少循环的次数,这也是大量死连接存在时,select和poll性能下降厉害的原因。
三、epoll模型
epoll阻塞操作的原型:
int
epoll_wait(
int
epfd, struct epoll_event
*
events,
int
maxevents,
int
timeout)
epoll引入了新的结构epoll_event。
typedef union epoll_data
{
void *ptr;
int fd;
__uint32_t u32;
__uint64_t u64;
}
epoll_data_t;
struct epoll_event
{
__uint32_t events; /**//* Epoll events */
epoll_data_t data; /**//* User data variable */
}
;
与以上模型的优点:
(1)它保留了poll的两个相对与select的优点
(2)epoll_wait的参数events作为出参,直接返回了有事件发生的fd,epoll_wait的返回值既是发生事件的个数,省略了poll中返回之后的循环操作。
(3)不再象select、poll一样将标识符局限于fd,epoll中可以将标识符扩大为指针,大大增加了epoll模型下的灵活性。
epoll的服务器模型伪码:
epollfd
=
epoll_create(EPOLL_LEN);
epoll_ctl(epollfd,EPOLL_CTL_ADD,server_sockfd,
&
ev)
struct epoll_event events[EPOLL_MAX_EVENT];
while
{
nfds=epoll_wait(epollfd,events,EPOLL_MAX_EVENT,-1);
循环nfds,是server_sockfd则accept,否则执行响应操作
}
epoll使用中的问题:
(1)epoll_ctl的EPOLL_CTL_DEL操作中,最后一个参数是无意义的,但是在小版本号过低的 2.6内核下要求最后一个参数一定非NULL,否则返回失败,并且返回的errno在man epoll_ctl中不存在,因此安全期间,保证epoll_ctl的最后一个参数总非NULLL。
(2)如果一个fd(比如管道)的事件导致了另一个fd2的删除,则必须扫描返回结果集中是否有fd2,有则在结果集中删除,避免冲突。
(3) 有文章说epoll在G网环境下性能会低于poll/select,看有些测试,给出的拐点在2w/s并发之后,我本人的工作范围不可能达到这么高的并 发,个人在测试性能的时候最大也是取的1w/s的并发,一个是因为系统单进程允许打开的文件描述符最大值,4w的数字太高了,另一个就是我这边服务器的性 能达不到那么高的性能,极限1.7w/s的响应,那测试的数据竟然在2w并发的时候还有2w的响应,不知道是什么硬件配置。或许等有了G网的环境,会关注 epoll高并发下的性能下降
。
(4)epoll的LT和ET性能的差异,我测试的数据表明两者性能相当,“使用epoll就是为了高性能,就是要使用ET模式”这个说法是站不住脚的。个人倾向于使用LT模式,编程简单、安全。
四、port模型
port则和epoll非常接近,不需要前后的两次扫描,直接返回有事件的结果,可以象epoll一样绑定指针,不同点是
(1)epoll可以返回多个事件,而port一次只返回一个(port_getn可以返回多个,但是在不到指定的n值时,等待直到达到n个)
(2)port返回的结果会自动port_dissociate,如果要再次监控,需要重新port_associate
这个就不多说了。
可以看出select-->poll-->epoll/port的演化路线:
(1)从readset、writeset等分离到 将读写事件集中到统一的结构
(2)从阻塞操作前后的两次循环 到 之后的一次循环 到精确返回有事件发生的fd
(3)从只能绑定fd信息,到可以绑定指针结构信息
五、抽象接口
综合以上多路复用函数的特点,可以进行统一的封装,这里给出我封装的接口,也算是给一个思路:
virtual
int
init()
=
0
;
virtual
int
wait()
=
0
;
virtual
void
*
next_result()
=
0
;
virtual
void
delete_from_results(
void
*
data)
=
0
;
virtual
void
*
get_data(
void
*
event)
=
0
;
virtual
int
get_event(
void
*
event)
=
0
;
virtual
int
add_data(
int
fd,XPollData
*
data)
=
0
;
virtual
int
delete_data(
int
fd,XPollData
*
data)
=
0
;
virtual
int
change_data(
int
fd,XPollData
*
data)
=
0
;
virtual
int
reset_data(
int
fd,XPollData
*
data)
=
0
;
使用的时候就是先init,再wait,再循环执行next_result直到空,每个result,使用get_data和get_event挨 个处理,如果某个fd引起另一个fd关闭,调delete_from_results(除epoll,其它都直接return),处理完 reset_data(select和port用,poll/epoll直接return)。
作者:CppExplore 网址: http://www.cppblog.com/CppExplore/