Output: Standard Output
Time Limit: 2 Seconds
n banks have been robbed this fine day. m (greater than or equal to n) police cruisers are on duty at various locations in the city. n of the cruisers should be dispatched, one to each of the banks, so as to minimize the average time of arrival at the n banks.
The input file contains several sets of inputs. The description of each set is given below:
The first line of input contains 0 < n <= m <= 20. n lines follow, each containing m positive real numbers: the travel time for cruiser m to reach bank n.
Input is terminated by a case where m=n=0. This case should not be processed.
For each set of input output a single number: the minimum average travel time, accurate to 2 fractional digits.
3 4 10.0 23.0 30.0 40.0 5.0 20.0 10.0 60.0 18.0 20.0 20.0 30.0 0 0 |
13.33 |
题意:给定n个银行,m个警察,现在每个警察到银行有一个时间,求每个银行都派一个警察看守并且平均时间最少。
思路:最大流最小费用,源点和警察建边,警察和银行建边,银行和汇点建边,然后就是费用流问题。最后输出的时候有个精度问题没注意WA了。
代码:
#include <stdio.h> #include <string.h> #include <math.h> #define INF 0x3f3f3f3f #include <queue> using namespace std; const int N = 55, M = 100005; const double INFF = 1000000000; int n, m, D, K, E, first[N], next[M], u[M], v[M], pe[N], pv[N], a[N], f[M], w[M], s, t; double value, cost[M]; queue<int>q; void add(int a, int b, int value, double time) { u[E] = a; v[E] = b; w[E] = value; cost[E] = time; next[E] = first[u[E]]; first[u[E]] = E ++; u[E] = b; v[E] = a; w[E] = 0; cost[E] = -time; next[E] = first[u[E]]; first[u[E]] = E ++; } void init() { E = s = 0, t = n + m + 1; memset(first, -1, sizeof(first)); for (int i = 1; i <= m; i ++) add(0, i, 1, 0.0); for (int i = 1; i <= n; i ++) { add(i + m, t, 1, 0.0); for (int j = 1; j <= m; j ++) { scanf("%lf", &value); add(j, i + m, 1, value); } } } void solve() { init(); bool vis[N]; double d[N], C = 0; int F = 0; memset(f, 0, sizeof(f)); while(1) { for (int i = 0; i <= t; i ++) d[i] = INFF; d[s] = 0.0; memset(vis, 0, sizeof(vis)); q.push(s); while(!q.empty()) { int u = q.front(); q.pop(); vis[u] = 0; for (int e = first[u]; e != -1; e = next[e]) { if (w[e] > f[e] && d[v[e]] - d[u] - cost[e] > 1e-9) { d[v[e]] = d[u] + cost[e]; pv[v[e]] = u; pe[v[e]] = e; if (!vis[v[e]]) { vis[v[e]] = 1; q.push(v[e]); } } } } if (fabs(d[t] - INFF) < 1e-9) break; int a = INF; for (int v = t; v != s; v = pv[v]) a = min(a, w[pe[v]] - f[pe[v]]); for (int v = t; v != s; v = pv[v]) { f[pe[v]] += a; f[pe[v]^1] -= a; } C += d[t] * a; F += a; } printf("%.2lf\n", C / n + 0.001); } int main() { while (~scanf("%d%d", &n, &m) && n + m) { solve(); } return 0; }